C O M M U N I C A T I O N S
Note Added in Proof: A PDB search for ligand C-F
interactions with the guanidinium group of Arg has documented
a number of examples underscoring the fluorophilic character
of the Arg side chain: M u¨ ller, K.; Faeh, C.; Diederich, F.
Science 2007, 317, 1881-1886.
Supporting Information Available: Synthesis and characterization
data for 1-7; crystallographic data for the complex of 3 with DNA
pol â (PDB ID, 2PXI); computer docking results. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
(
(
1) Barnes, D. E.; Lindahl, T. Annu. ReV. Genet. 2004, 38, 445-476.
2) Beard, W. A.; Wilson, S. H. Chem. ReV. 2006, 106, 361-382.
Figure 1. Detail from X-ray crystal active-site structure of DNA pol â:DNA
complex soaked with a 1:1 mixture of 3 and 4.
3) (a) Bergoglio, V.; Canitrot, Y.; Hogarth, L.; Minto, L.; Howell, S. B.;
Cazaux, C.; Hoffmann, J. S. Oncogene 2001, 20, 6181-6187. (b) Louat,
T.; Servant, L.; Rols, M. P.; Bieth, A.; Teissie, J.; Hoffmann, J. S.; Cazaux,
C. Mol. Pharmacol. 2001, 60, 553-558. (c) Servant, L.; Bieth, A.;
Hayakawa, H.; Cazaux, C.; Hoffmann, J.-S. J. Mol. Biol. 2002, 315, 1039-
1047. (d) Starcevic, D.; Dalal, S.; Sweasy, J. B. Cell Cycle 2004, 3, 998-
1001. (e) Albertella, M. R.; Lau, A.; O’Connor, M. J. DNA Repair 2005,
Thus, in the absence of an dominant steric factor, asymmetric
polarization induced by the F substituent presumably influences 3
versus 4 binding specificity electrostatically.15 If we assume that
4
, 583-593. (f) Dalal, S.; Hile, S.; Eckert, K. A.; Sun, K.; Starcevic, D.;
the limit for detection of fluorine electron density at the (S)-F
position corresponds to a S/R ratio of roughly 1:4 or less, then a
stereospecific interaction on the order of 0.8 kcal/mol would suffice.
The fluorine atom in the 3 complex is located 3.1 Å from an Arg183
Sweasy, J. B. Biochemistry 2005, 44, 15664-15673. (g) Sweasy, J. B.;
Lauper, J. M.; Eckert, K. A. Radiat. Res. 2006, 166, 693-714.
(
4) Kim, T. W.; Delaney, J. C.; Essigmann, J. M.; Kool, E. T. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 15803-15808.
(5) (a) Shipitsin, A. V.; Victorova, L. S.; Shirokova, E. A.; Dyatkina, N. B.;
Goryunova, L. E.; Beabealashvili, R. S.; Hamilton, C. J.; Roberts, S. M.;
Krayevsky, A. J. Chem. Soc., Perkin Trans. 1 1999, 1039-1050. (b)
Hamilton, C. J.; Roberts, S. M.; Shipitsin, A. Chem. Commun. 1998,
1087-1088.
1
6
guanidine N atom (Figure 1), raising the possibility that an unusual
17
F‚‚‚H bonding interaction contributes to stabilizing the preferred
stereoisomer within the desolvated and preorganized1
5,18
enzyme
(
6) Sucato, C. A.; Upton, T. G.; Kashemirov, B. A.; Batra, V. K.; Martinek,
V.; Xiang, Y.; Beard, W. A.; Pedersen, L. C.; Wilson, S. H.; McKenna,
C. E.; Florian, J.; Warshel, A.; Goodman, M. F. Biochemistry 2007, 46,
461-471.
active site complex. Further studies are in progress to explore this
16b
possibility and alternative explanations.
Molecular docking calculations19 are often valuable in studying
protein-ligand interactions. Prior to attempting the crystallography
studies, we first carried out an exploratory ligand docking experi-
(
7) (a) Arabshahi, L.; Khan, N. N.; Butler, M.; Noonan, T.; Brown, N. C.;
Wright, G. E. Biochemistry 1990, 29, 6820-6826. (b) Martynov, B. I.;
Shirokova, E. A.; Jasko, M. V.; Victorova, L. S.; Krayevsky, A. A. FEBS
Lett. 1997, 410, 423-427. (c) Krayevsky, A.; Arzumanov, A.; Shirokova,
E.; Dyatkina, N.; Victorova, L.; Jasko, M.; Alexandrova, L. Nucleosides
Nucleotides 1998, 17, 681-693. (d) Alexandrova, L. A.; Skoblov, A. Y.;
Jasko, M. V.; Victorova, L. S.; Krayevsky, A. A. Nucleic Acids Res. 1998,
2
0
ment based on the R,â-NH-dUTP-DNA-pol â structure (2FMS),
using Autodock 3.0,21 substituting â,γ-CF
2
-dTTP for the dUTP
analogue. Docking runs predicted a preferred â,γ-CF triphosphate
2
26, 778-786.
chain orientation similar to that of natural dNTPs, but placing one
of the two diastereotopic F atoms close to Arg183 in the active
(
(
8) Moffatt, J. G.; Khorana, H. G. J. Am. Chem. Soc. 1961, 83, 649-658.
9) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. Chem. Commun. 1981,
site environment. Redocking of 3 using our recently available â,γ-
1188-1190.
6
CF
2
-dGTP-DNA-pol â structure (2ISO) revealed a clustering of
(10) McKenna, C. E.; Shen, P.-D. J. Org. Chem. 1981, 46, 4573-4576.
11) Blackburn, G. M.; England, D. A.; Kolkmann, F. Chem. Commun. 1981,
30-932.
12) (a) Marma, M. S.; Khawli, L. A.; Harutunian, V.; Kashemirov, B. A.;
McKenna, C. E. J. Fluorine Chem. 2005, 126, 1467-1475. (b) Mohamady,
S.; Jakeman, D. L. J. Org. Chem. 2005, 70, 10588-10591.
(
solutions placing the F atom within bonding proximity of the
Arg183, whereas with 4 such an interaction was less favored. An
overlay of the nucleoside moieties and triphosphate backbones of
9
(
1, 2, and 3 within the DNA pol â complexes (X-ray crystallographic
(
(
(
13) McKenna, C. E.; Harutunian, V. FASEB J. 1988, 2, 6148.
14) Beard, W. A.; Wilson, S. H. Methods Enzymol. 1995, 262, 98-107.
15) O’Hagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645-652.
data) reveal them to be substantially congruent, confirming that
introduction of the F atom(s) does not perturb the overall fit of the
substrate to the active site and that the F atom positions are similar
in 2 and 3.
In conclusion, under crystallization conditions, 3 is preferentially
bound from a 1:1 mixture of diastereomers 3 and 4 into a DNA-
pol â complex, in which a polar CHF bond to Arg183 is spatially
allowed. Docking simulations predicted this configuration to be
more likely with 3 than with its S stereoisomer 4, which was not
observed in the crystal complex. Substitution of a single fluorine
(16) (a) Howard, J. A. K.; Hoy, V. J.; O’Hagan, D.; Smith, G. T. Tetrahedron
1
996, 52, 12613-12622. (b) Paulini, R.; M u¨ ller, K.; Diederich, F. Angew.
Chem., Int. Ed. 2005, 44, 1788-1805.
(
17) (a) Mecozzi, S.; Hoang, K. C.; Martin, O. Abstract FLUO-047; 226th
National Meeting of the American Chemical Society, New York, Sept.
7
-11, 2003; American Chemical Society: Washington, DC, 2003. (b)
Mecozzi, S. Abstract MEDI-467; 230th National Meeting of the American
Chemical Society, Washington, DC, Aug. 28-Sept. 1, 2005; American
Chemical Society: Washington, DC, 2005.
(
(
18) Shibakami, M.; Sekiya, A. Chem. Commun. 1992, 1742-1743.
19) (a) Vieth, M.; Hirst, J. D.; Dominy, B. N.; Daigler, H.; Brooks, C. L., III.
J. Comput. Chem. 1998, 19, 1623-1631. (b) Bursulaya, B. D.; Totrov,
M.; Abagyan, R.; Brooks, C. L., III. J. Comput. Mol. Design 2004, 17,
755-763.
2
atom at the bridging carbon atom of a â,γ-CH -dNTP analogue,
while offering the advantage pK
a
properties more closely mimicking
those of the dNTP substrate,22 also may result in stereospecific
binding to the targeted active site, determined by the CHF chirality.
(
20) Batra, V. K.; Beard, W. A.; Shock, D. D.; Krahn, J. M.; Pedersen, L. C.;
Wilson, S. H. Structure 2006, 14, 757-766.
(
21) (a) Goodsell, D. S.; Morris, G. M.; Olson, A. J. J. Mol. Recognit. 1996,
Acknowledgment. Dedicated to Professor F. H. Westheimer,
9
, 1-5. (b) Morris, G. M.; Goodsell, D. S.; Huey, R.; Hart, W. E.;
1912-2007. We thank Dr. Kym Faull and Dr. Ron New for
Halliday, S.; Belew, R.; Olson, A. J. Autodock User Guide, version 3.0.5;
The Scripps Research Institute, 2001. (c) SPARTAN ’02 for Windows;
Wavefunction, Inc., 2002. (d) Li, C.; Xu, L.; Wolan, D. W.; Wilson, I.
A.; Olson, A. J. J. Med. Chem. 2004, 47, 6681-6690.
assistance with HRMS analysis. This research was supported by
NIH Grant 5-U19-CA105010 and in part by the Intramural Research
Program of the NIH, National Institute of Environmental Health
Sciences.
(
22) Berkowitz, D. B.; Bose, M. J. Fluorine Chem. 2001, 112, 13-33.
JA072127V
J. AM. CHEM. SOC.
9
VOL. 129, NO. 50, 2007 15413