Organic Letters
Letter
Rings. In Strain and Its Implications in Organic Chemistry; de Meijere,
A., Blechert, S., Eds.; Kluwer Academic: Dordrecht, 1989; pp 25−37.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
c) Houk, K. N.; Li, Y.; Evanseck, J. D. Transition Structures of
Hydrocarbon Pericyclic Reactions. Angew. Chem., Int. Ed. Engl. 1992,
31, 682−708.
(4) (a) Mehta, G.; Krishnamurthy, N. A route, via tetraquinane, to
the 5−8−5 carbocyclic nucleus of fusicoccins and ophiobolins. J.
Chem. Soc., Chem. Commun. 1986, 1319−1321. (b) Denmark, S. E.;
Habermas, K. L.; Hite, G. A. Silicon-Directed Nazarov Cyclizations.
Part V. Substituent and heteroatom effects on the reaction. Helv.
Chim. Acta 1988, 71, 168−194. (c) Denmark, S. E.; Wallace, M. A.;
Walker, C. B., Jr. Silicon-directed Nazarov cyclizations. 8. Stereo-
electronic control of torquoselectivity. J. Org. Chem. 1990, 55, 5543−
Experimental procedures, analytical data for all new
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
5545. (d) Pridgen, L. N.; Huang, K.; Shilcrat, S.; Tickner-Eldridge, A.;
DeBrosse, C.; Haltiwanger, R. C. An Unprecedented Asymmetric
Nazarov Cyclization for the Synthesis of Nonracemic Indanes as
Endothelin Receptor Antagonists. Synlett 1999, 1999, 1612−1614.
(e) Kerr, D. J.; Metje, C.; Flynn, B. L. A convenient two step protocol
for the synthesis of cyclopentenones and indanones, including an
asymmetric variant. Chem. Commun. 2003, 1380−1381. (f) Prandi,
C.; Ferrali, A.; Guarna, A.; Venturello, P.; Occhiato, E. G. New
Synthetic Approach to Cyclopenta-Fused Heterocycles Based upon a
Mild Nazarov Reaction. 2. Further Studies on the Torquoselectivity. J.
Org. Chem. 2004, 69, 7705−7709. (g) Mazzola, R. D., Jr.; White, T.
D.; Vollmer-Snarr, H. R.; West, F. G. Stereoselective Nazarov
Cyclizations of Bridged Bicyclic Dienones. Org. Lett. 2005, 7, 2799−
AUTHOR INFORMATION
■
*
ORCID
Notes
2801. (h) Kerr, D. J.; Miletic, M.; Chaplin, J. H.; White, J. M.; Flynn,
The authors declare no competing financial interest.
B. L. Oxazolidinone-Promoted, Torquoselective Nazarov Cycliza-
tions. Org. Lett. 2012, 14, 1732−1735. (i) Flynn, B. L.; Manchala, N.;
Krenske, E. H. Opposing Auxiliary Conformations Produce the Same
Torquoselectivity in an Oxazolidinone-Directed Nazarov Cyclization.
J. Am. Chem. Soc. 2013, 135, 9156−9163. (j) Manchala, N.; Law, H.
Y. L.; Kerr, D. J.; Volpe, R.; Lepage, R. J.; White, J. M.; Krenske, E. H.;
Flynn, B. L. Multistereocenter-Containing Cyclopentanoids from
Ynamides via Oxazolidinone-Controlled Nazarov Cyclization. J. Org.
Chem. 2017, 82, 6511−6527.
ACKNOWLEDGMENTS
This work was partially supported by JSPS KAKENHI
Scientific Research (C) 18K05112].
■
[
REFERENCES
■
(
1) (a) For reviews of the synthesis of cyclopentenones, see: Ellison,
R. A. Methods for the synthesis of 3-oxocyclopentenes. Synthesis
(5) Komatsuki, K.; Sadamitsu, Y.; Sekine, K.; Saito, K.; Yamada, T.
1
973, 1973, 397−412. (b) Piancatelli, G.; D’Auria, M.; D’Onofrio, F.
Stereospecific Decarboxylative Nazarov Cyclization Mediated by
Carbon Dioxide for the Preparation of Highly Substituted 2-
Cyclopentenones. Angew. Chem., Int. Ed. 2017, 56, 11594−11598.
Synthesis of 1,4-Dicarbonyl Compounds and Cyclopentenones from
Furans. Synthesis 1994, 1994, 867−889. (c) Gibson, A. E.; Lewis, S.
E.; Mainolfi, N. Transition metal-mediated routes to cyclopentenones.
J. Organomet. Chem. 2004, 689, 3873−3890. (d) Simeonov, S. P.;
Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.; Afonso, C. A. M. Synthesis
of Chiral Cyclopentenones. Chem. Rev. 2016, 116, 5744−5893.
(6) (a) Yamada, W.; Sugawara, Y.; Cheng, H. M.; Ikeno, T.;
Yamada, T. Silver-Catalyzed Incorporation of Carbon Dioxide into
Propargylic Alcohols. Eur. J. Org. Chem. 2007, 2007, 2604−2607.
(b) Sekine, K.; Yamada, T. Silver-catalyzed carboxylation. Chem. Soc.
(
2) For reviews of Nazarov cyclization, see: (a) Frontier, A. J.;
Rev. 2016, 45, 4524−4532.
Collison, C. The Nazarov cyclization in organic synthesis. Recent
advances. Tetrahedron 2005, 61, 7577−7606. (b) Tius, M. A. Some
New Nazarov Chemistry. Eur. J. Org. Chem. 2005, 2005, 2193−2206.
(7) It has been generally known that the isomerization of the (Z)-
olefin of divinyl ketones into the (E)-olefin of divinyl ketones induced
by the generation of the pentadienyl cation intermediate occurred
during the Nazarov cyclization. Giese, S.; West, F. G. The reductive
Nazarov cyclization. Tetrahedron Lett. 1998, 39, 8393−8396.
(
c) Pellissier, H. Recent developments in the Nazarov process.
Tetrahedron 2005, 61, 6479−6517. (d) Grant, T. N.; Rieder, C. J.;
West, F. G. Interrupting the Nazarov reaction: domino and cascade
processes utilizing cyclopentenyl cations. Chem. Commun. 2009,
(8) (a) Shi, X.; Gorin, D. J.; Toste, F. D. Synthesis of 2-
Cyclopentenones by Gold(I)-Catalyzed Rautenstrauch Rearrange-
5676−5688. (e) Shimada, N.; Stewart, C.; Tius, M. A. Asymmetric
ment. J. Am. Chem. Soc. 2005, 127, 5802−5803. (b) Faza, O. N.;
Nazarov cyclizations. Tetrahedron 2011, 67, 5851−5870. (f) Vaidya,
T.; Eisenberg, R.; Frontier, A. J. Catalytic Nazarov Cyclization: The
State of the Art. ChemCatChem 2011, 3, 1531−1548. (g) Spener, W.
T., III; Vaidya, T.; Frontier, A. J. Beyond the Divinyl Ketone:
Innovations in the Generation and Nazarov Cyclization of
Pentadienyl Cation Intermediates. Eur. J. Org. Chem. 2013, 2013,
́
Lopez, C. S.; Alvarez, R.; de Lera, A. R. Mechanism of the Gold(I)-
́
Catalyzed Rautenstrauch Rearrangement: A Center-to-Helix-to-
Center Ghirality Transfer. J. Am. Chem. Soc. 2006, 128, 2434−2437.
(9) Asymmetric Nazarov cyclization based on chirality transfer of
chiral allene: (a) Hu, H.; Smith, D.; Cramer, R. E.; Tius, M. A.
Asymmetric Cyclopentannelation. Axial to Tetrahedral Chirality
Transfer. J. Am. Chem. Soc. 1999, 121, 9895−9896. (b) Harrington,
P. E.; Tius, M. A. Asymmetric Cyclopentannelation. Chiral Auxiliary
on the Allene. Org. Lett. 2000, 2, 2447−2450. (c) Harrington, P. E.;
Tius, M. A. Synthesis and Absolute Stereochemistry of Roseophilin. J.
Am. Chem. Soc. 2001, 123, 8509−8514. (d) Harrington, P. E.; Murai,
T.; Chu, C.; Tius, M. A. Asymmetric Cyclopentannelation: Camphor-
Derived Auxiliary. J. Am. Chem. Soc. 2002, 124, 10091−10100.
(e) Tius, M. A. Cationic Cyclopentannelation of Allene Ethers. Acc.
Chem. Res. 2003, 36, 284−290.
3
621−3633. (h) Tius, M. A. Allene ether Nazarov cyclization. Chem.
Soc. Rev. 2014, 43, 2979−3002. (i) Di Grandi, M. J. Nazarov-like
cyclization reactions. Org. Biomol. Chem. 2014, 12, 5331−5345.
(j) Wenz, D. R.; Read de Alaniz, J. The Nazarov Cyclization: A
Valuable Method to Synthesize Fully Substituted Carbon Stereo-
centers. Eur. J. Org. Chem. 2015, 2015, 23−37.
(3) (a) Kirmse, W.; Rondan, N. G.; Houk, K. N. Stereoselective
substituent effects on conrotatory electrocyclic reactions of cyclo-
butenes. J. Am. Chem. Soc. 1984, 106, 7989−7991. (b) Houk, K. N.
Stereoselective Electrocyclizations and Sigmatropic Shifts of Strained
D
Org. Lett. XXXX, XXX, XXX−XXX