ACS Catalysis
Research Article
ness of the Hf(IV)-catalyzed macrolactonization should be
highly useful, given the prevalence of macrolactone structures
in pharmaceutically and biologically active products and current
interest in sustainability in reagent selection for industrially
see: (d) Tatsumi, T.; Sakashita, H.; Asano, K. J. Chem. Soc., Chem.
Commun. 1993, 1264−1265. (e) Ookoshi, T.; Onaka, M. Tetrahedron
Lett. 1998, 39, 293−296.
(
14) (a) Benz, G. In Comprehensive Organic Synthesis; Trost, B. M.,
3
8,39
Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991. (b) Franklin, A. S. J.
Chem. Soc., Perkin Trans. 1 1998, 2451−2466. (c) Franklin, A. S. J.
Chem. Soc., Perkin Trans. 1 1999, 3537−3554. (d) Otera, J.
Esterification Methods, Reactions and Applications; Wiley-VCH:
Weinheim, Germany, 2003.
relevant processes.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(15) Catalysis has been used to form the activated esters. For
examples see: (a) Ohba, Y.; Takatsuji, M.; Nakahara, K.; Fujioka, H.;
Kita, Y. Chem. Eur. J. 2009, 15, 3526−3537. (b) Shiina, I.; Kikuchi, T.;
Sasaki, A. Org. Lett. 2006, 8, 4955−4958. (c) Trost, B. M.; Chisholm, J.
D. Org. Lett. 2002, 4, 3743−3745.
Experimental procedures and spectroscopic data for all
(
16) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614−
AUTHOR INFORMATION
■
*
5616.
(17) Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394−2395.
(18) Kurihara, T.; Nakajima, Y.; Mitsunobu, O. Tetrahedron Lett.
1
(
1
976, 28, 2455−2458.
19) (a) Parenty, A.; Moreau, X.; Campagne, J. M. Chem. Rev. 2006,
06, 911−939. (b) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.;
Notes
The authors declare no competing financial interest.
Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989−1993.
(20) A recent search for “Yamaguchi Macrolactonization” on
Scifinder (November 21th, 2014) found 219 reports of its use in
synthesis.
ACKNOWLEDGMENTS
The authors acknowledge the Natural Sciences and Engineering
Research Council of Canada (NSERC), Universite
■
́
de
(
21) 2-Methyl-6-nitrobenzoic anhydride: Shiina, I.; Kubota, M.;
Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822−1830.
22) (a) Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.;
Montreal, and the Centre for Green Chemistry and Catalysis
CGCC) for generous funding. The authors thank Ms. Anne-
Catherine Bedard and Mr. Jeffrey Santandrea for donation of
(
(
́
Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247−4252. (b) Mo-
lander, G. A. Chem. Rev. 1992, 92, 29−68. (c) Kobayashi, S.;
Nagayama, S.; Busujima, T. J. Am. Chem. Soc. 1998, 120, 8287−8288.
(d) Kobayashi, S.; Hachiya, I. Tetrahedron Lett. 1992, 33, 1625−1628.
starting materials.
REFERENCES
■
(
1) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. Nat. Rev. Drug
Discovery 2008, 7, 608−624.
24) Alternative solvents such as dioxane, TFE, DME, and THF did
(
2
(
2
2) Matsuda, H.; Watanabe, S.; Yamamoto, K. Chem. Biodiversity
004, 1, 1985−1991.
3) Rueedi, G.; Nagel, M.; Hansen, H.-J. Org. Lett. 2004, 6, 2989−
991.
4) Fehr, C.; Galindo, J.; Etter, O.; Thommen, W. Angew. Chem., Int.
Ed. 2002, 41, 4523−4526.
5) (a) Rowe, D. J. Chemistry and Technology of Flavors and
(
not afford macrolactone 2, and quantitative recovery of 1 was
obtained. PhCl as solvent afforded a slightly better yield of 2 (88%),
but for convenience, PhMe was selected as the solvent.
(
(25) (a) Ishihara, K.; Ohara, S.; Yamamoto, H. Science 2000, 290,
1
140−1142. Hf-based Lewis acids have also been used in
(
stoichiometric transesterifcation. See: (b) Oohashi, Y.; Fukumoto,
Fragrances; Blackwell: Oxford, U.K., 2005. (b) Ohloff, G.;
Pickenhagen, W.; Kraft, P. Scent and Chemistry: The Molecular World
of Odors; Verlag Helvetica Acta: Zurich, Switzerland, 2011.
K.; Mukaiyama, T. Chem. Lett. 2005, 34, 710−711.
(26) Achieving efficient catalysis in direct intermolecular condensa-
tion of carboxylic acids and alcohols has attracted considerable
(
(
(
6) Bomgardner, M. M. Chem. Eng. News 2012, 90, 25−29.
attention. See: Ishihara, K. Tetrahedron 2009, 65, 1085−1109.
7) William, A. S. Synthesis 1999, 10, 1707−1723.
(
(
27) Proton Sponge could also be used (10 mol %, 63% yield of 2).
28) Conducting the macrocyclization at 10 mM produced the head-
8) Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Dagli, M. L.; Fryer,
A. D.; Greim, H.; Miyachi, Y.; Saurat, J. H.; Sipes, I. G. Food Chem.
to-tail 26-membered dimer in 60% yield.
Toxicol. 2011, 49, S126−S141.
(29) Macrolactonization on a 1 g scale afforded 67% of 2.
(
3
̈
9) (a) Furstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 3942−
(30) Morales-Serna, J. A.; Sanchez, E.; Velazquez, R.; Bernal, J.;
943. (b) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.;
Schrock, R. R.; Hoveyda, A. H. Nature 2011, 479, 88−93.
10) (a) Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J.
Garcıa
Biomol. Chem. 2010, 8, 4940−4948.
31) Tian, J.; Gao, W.-C.; Zhou, D.-M.; Zhang, C. Org. Lett. 2012, 14,
020−3023.
32) For some examples see: (a) Nicolaou, K. C.; Kim, D. W.; Baati,
R.; O’Brate, A.; Giannakakou, P. Chem. Eur. J. 2003, 9, 6177−6191.
b) Erickson, K. L.; Beutler, J. A.; Cardellina, J. H., II; Boyd, M. R. J.
́
-Rıos, E.; Gavino, R.; Negron-Silvab, G.; Cardenas, J. Org.
(
(
3
(
Am. Chem. Soc. 2013, 135, 94−97. (b) Wang, C.; Yu, M.; Kyle, A. F.;
Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Chem. Eur. J.
013, 19, 2726−2740.
11) (a) Lumbroso, A.; Abermil, N.; Breit, B. Chem. Sci. 2012, 3,
89−793. (b) Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White,
2
(
7
(
Org. Chem. 1997, 62, 8188−8192. (c) Kim, J. W.; Shin-Ya, K.;
Furihata, K.; Hayakawa, Y.; Seto, H. J. Org. Chem. 1999, 64, 153−155.
(d) Galinis, D. L.; McKee, T. C.; Pannell, L. K.; Cardellina, J. H., II;
Boyd, M. R. J. Org. Chem. 1997, 62, 8968−8969.
(33) Shiina, I.; Hashizume, M. Tetrahedron 2006, 62, 7934−7939.
(34) Curiously, an esterification with allyl alcohol was not productive
involving secondary alcohols.
M. C. J. Am. Chem. Soc. 2006, 128, 9032−9033. For alternative
approaches employing organocatalysis see: (c) Lee, K.; Kim, H.; Hong,
J. Angew. Chem., Int. Ed. 2012, 51, 5735−5738.
(
2
(
12) Parenty, A.; Moreau, X.; Niel, G.; Campagne, J.-M. Chem. Rev.
013, 113, PR1−PR40.
13) Perhaps the first example of catalysis in macrolactonization is
the synthesis of 2: (a) Spanagel, E. W.; Carothers, W. H. J. Am. Chem.
Soc. 1936, 654−656. (b) Funatomi, T.; Wakasugi, K.; Misaki, T.;
Tanabe, Y. Green Chem. 2006, 8, 1022−1027. For examples using tin
catalysis see: (c) Otera, J.; Yano, T.; Himeno, Y.; Nozaki, H.
Tetrahedron Lett. 1986, 27, 4501−4507. For examples using zeolites
(36) The activation of primary amides to form esters may suggest
that the macrolactonizations proceed via carboxylic acid activation. For
1
466
ACS Catal. 2015, 5, 1462−1467