268
S. Endo et al. / Chemico-Biological Interactions 191 (2011) 261–268
References
[27] M. Sanai, S. Endo, T. Matsunaga, S. Ishikura, K. Tajima, O. El-Kabbani, A. Hara,
Rat NAD+-dependent 3␣-hydroxysteroid dehydrogenase (AKR1C17): a mem-
ber of the aldo–keto reductase family highly expressed in kidney cytosol, Arch.
Biochem. Biophys. 464 (2007) 122–129.
[1] J.L. Goldstein, M.S. Brown, Regulation of the mevalonate pathway, Nature 343
(1990) 425–430.
[2] P.A. Edwards, J. Ericsson, Sterols and isoprenoids: signaling molecules derived
from the cholesterol biosynthetic pathway, Annu. Rev. Biochem. 68 (1999)
157–185.
[3] M. Bifulco, Role of the isoprenoid pathway in ras transforming activity,
cytoskeleton organization, cell proliferation and apoptosis, Life Sci. 77 (2005)
1740–1749.
[4] V.S Bansal, S. Vaidya, Characterization of two distinct allyl pyrophosphatase
activities from rat liver microsomes, Arch. Biochem. Biophys. 315 (1994)
393–399.
[5] S.E. Ownby, R.J. Hohl, Isoprenoid alcohols restore protein isoprenylation in a
time-dependent manner independent of protein synthesis, Lipids 38 (2003)
751–759.
[6] J.B. Roullet, R.L. Spaetgens, T. Burlingame, Z.P. Feng, G.W. Zamponi, Modula-
tion of neuronal voltage-gated calcium channels by farnesol, J. Biol. Chem. 274
(1999) 25439–25446.
[7] T.A. Kocarek, N.A. Mercer-Haines, Squalestatin 1-inducible expression of rat
CYP2B: evidence that an endogenous isoprenoid is an activator of the consti-
tutive androstane receptor, Mol. Pharmacol. 62 (2002) 1177–1186.
[8] N. Takahashi, T. Kawada, T. Goto, T. Yamamoto, A. Taimatsu, N. Matsui, K.
Kimura, M. Saito, M. Hosokawa, K. Miyashita, T. Fushiki, Dual action of iso-
prenols from herbal medicines on both PPAR␥ and PPAR␣ in 3T3-L1 adipocytes
and HepG2 hepatocytes, FEBS Lett. 514 (2002) 315–322.
[9] B.M. Forman, B. Ruan, J. Chen, G.J. Schroepfer Jr., R.M. Evans, The orphan nuclear
receptor LXR␣ is positively and negatively regulated by distinct products of
mevalonate metabolism, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 10588–10593.
[10] T.J. Kotti, D.M. Ramirez, B.E. Pfeiffer, K.M. Huber, D.W. Russell, Brain cholesterol
turnover required for geranylgeraniol production and learning in mice, Proc.
Natl. Acad. Sci. U.S.A. 103 (2006) 3869–3874.
[11] S.J. Fliesler G.J.Jr., Schroepfer metabolism of mevalonic acid in cell-free
homogenates of bovine retinas. Formation of novel isoprenoid acids, J. Biol.
Chem. 258 (1983) 15062–15070.
[12] D. Gonzalez-Pacanowska, B. Arison, C.M. Havel, J.A. Watson, Isopentenoid
synthesis in isolated embryonic Drosophila cells. Farnesol catabolism and -
oxidation, J. Biol. Chem. 263 (1988) 1301–1306.
[13] G.R. Waller, Dehydrogenation of trans-trans farnesol by horse liver alcohol
dehydrogenase, Nature 207 (1965) 1389–1390.
[14] W.M. Keung, Human liver alcohol dehydrogenases catalyze the oxidation of
the intermediary alcohols of the shunt pathway of mevalonate metabolism,
Biochem. Biophys. Res. Commun. 174 (1991) 701–707.
[15] Y. Kodaira, K. Usui, I. Kon, H. Sagami, Formation of (R)-2,3-dihydro-
geranylgeranoic acid from geranylgeraniol in rat thymocytes, J. Biochem. 132
(2002) 327–334.
[16] Y. Shidoji, N. Nakamura, H. Moriwaki, Y. Muto, Rapid loss in the mitochondrial
membrane potential during geranylgeranoic acid-induced apoptosis, Biochem.
Biophys. Res. Commun. 230 (1997) 58–63.
[17] X. Wang, J. Wu, Y. Shidoji, Y. Muto, N. Ohishi, K. Yagi, S. Ikegami, T. Shinki, N.
Udagawa, T. Suda, Y. Ishimi, Effects of geranylgeranoic acid in bone: induction of
osteoblast differentiation and inhibition of osteoclast formation, J. Bone Miner.
Res. 17 (2002) 91–100.
[18] Y. Kodaira, T. Kusumoto, T. Takahashi, Y. Matsumura, Y. Miyagi, K.
Okamoto, Y. Shidoji, H. Sagami, Formation of lipid droplets induced by 2,3-
dihydrogeranylgeranoic acid distinct from geranylgeranoic acid, Acta Biochim.
Pol. 54 (2007) 777–782.
[28] T. Iino, M. Tabata, S. Takikawa, H. Sawada, H. Shintaku, S. Ishikura, A. Hara,
Tetrahydrobiopterin is synthesized from 6-pyruvoyl-tetrahydropterin by the
human aldo–keto reductase AKR1 family members, Arch. Biochem. Biophys.
416 (2003) 180–187.
[29] K. Matsuura, A. Hara, Y. Deyashiki, H. Iwasa, T. Kume, S. Ishikura, H. Shiraishi, Y.
Katagiri, Roles of the C-terminal domains of human dihydrodiol dehydrogenase
isoforms in the binding of substrates and modulators: probing with chimaeric
enzymes, Biochem. J. 336 (1998) 429–436.
[30] H. Shiraishi, S. Ishikura, K. Matsuura, Y. Deyashiki, M. Ninomiya, S. Sakai,
A. Hara, Sequence of the cDNA of a human dihydrodiol dehydrogenase iso-
form (AKR1C2) and tissue distribution of its mRNA, Biochem. J. 334 (1998)
399–405.
[31] K. Matsuura, H. Shiraishi, A. Hara, K. Sato, Y. Deyashiki, M. Ninomiya, S.
Sakai, Identification of a principal mRNA species for human 3␣-hydroxysteroid
dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-
ketoreductase activity, J. Biochem. 124 (1998) 940–946.
[32] S. Ohno, M. Matsui, T. Yokogawa, M. Nakamura, T. Hosoya, T. Hiramatsu, M.
Suzuki, N. Hayashi, K. Nishikawa, Site-selective post-translational modification
of proteins using an unnatural amino acid, 3-azidotyrosine, J. Biochem. 141
(2007) 335–343.
[33] T. Matsunaga, Y. Shinoda, Y. Inoue, S. Endo, O. El-Kabbani, A. Hara, Protec-
tive effect of rat aldo–keto reductase (AKR1C15) on endothelial cell damage
elicited by 4-hydroxy-2-nonenal, Chem. Biol. Interact. 191 (2011) 364–
370.
[34] R. Lindahl, S. Evces, Rat liver aldehyde dehydrogenase. I. Isolation and char-
acterization of four high Km normal liver isozymes, J. Biol. Chem. 259 (1984)
11986–11990.
[35] T.L. Kelson, J.R. Secor McVoy, W.B. Rizzo, Human liver fatty aldehyde
dehydrogenase: microsomal localization, purification, and biochemical char-
acterization, Biochim. Biophys. Acta 1335 (1997) 99–110.
[36] D.Y. Mitchell, D.R. Petersen, Oxidation of aldehydic products of lipid peroxida-
tion by rat liver microsomal aldehyde dehydrogenase, Arch. Biochem. Biophys.
269 (1989) 11–17.
[37] K. Miyauchi, R. Masaki, S. Taketani, A. Yamamoto, M. Akayama, Y. Tashiro,
Molecular cloning, sequencing, and expression of cDNA for rat liver microsomal
aldehyde dehydrogenase, J. Biol. Chem. 266 (1991) 19536–19542.
[38] P. Julià, J. Farrés, X. Parés, Characterization of three isoenzymes of rat alcohol
dehydrogenase. Tissue distribution and physical and enzymatic properties, Eur.
J. Biochem. 162 (1987) 179–189.
[39] A. Allali-Hassani, J.M. Peralba, S. Martras, J. Farrés, X. Parés, Retinoids, -
hydroxyfatty acids and cytotoxic aldehydes as physiological substrates, and
H2-receptor antagonists as pharmacological inhibitors, of human class IV alco-
hol dehydrogenase, FEBS Lett. 426 (1998) 362–366.
[40] M.D Boleda, N. Saubi, J. Farrés, X. Parés, Physiological substrates for rat alcohol
dehydrogenase classes: aldehydes of lipid peroxidation, -hydroxyfatty acids,
and retinoids, Arch. Biochem. Biophys. 307 (1993) 85–90.
[41] A. Sunde, P.A. Rosness, K.B. Eik-Nes, Effects in vitro of medroxyprogesterone
acetate on steroid metabolizing enzymes in the rat: selective inhibition of
3␣-hydroxysteroid oxidoreductase activity, J. Steroid Biochem. 17 (1982)
197–203.
[42] T.M. Penning, I. Mukharji, S. Barrows, P. Talalay, Purification and properties of
a 3␣-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by
anti-inflammatory drugs, Biochem. J. 222 (1984) 601–611.
[43] T.E. Smithgall, T.M. Penning, Indomethacin-sensitive 3␣-hydroxysteroid dehy-
drogenase in rat tissues, Biochem. Pharmacol. 34 (1985) 831–835.
[44] T. Matsunaga, S. Shintani, A. Hara, Multiplicity of mammalian reductases for
xenobiotic carbonyl compounds, Drug Metab. Pharmacokinet. 21 (2006) 1–18.
[45] D.R. Bauman, S.I. Rudnick, L.M. Szewczuk, Y. Jin, S. Gopishetty, T.M. Pen-
ning, Development of nonsteroidal anti-inflammatory drug analogs and steroid
carboxylates selective for human aldo–keto reductase isoforms: potential anti-
neoplastic agents that work independently of cyclooxygenase isozymes, Mol.
Pharmacol. 67 (2005) 60–68.
[46] S. Gobec, P. Brozic, T.L. Rizner, Nonsteroidal anti-inflammatory drugs and their
analogues as inhibitors of aldo–keto reductase AKR1C3: new lead compounds
for the development of anticancer agents, Bioorg. Med. Chem. Lett. 15 (2005)
5170–5175.
[47] S. Endo, T. Matsunaga, K. Kuwata, H.T. Zhao, O. El-Kabbani, Y. Kitade, A. Hara,
Chromene-3-carboxamide derivatives discovered from virtual screening as
potent inhibitors of the tumour maker, AKR1B10, Bioorg. Med. Chem. 18 (2010)
2485–2490.
[48] S. Endo, T. Matsunaga, M. Soda, K. Tajima, H.T. Zhao, O. El-Kabbani, A. Hara,
Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-
phenylanthranilic acids and glycyrrhetic acid, Biol. Pharm. Bull. 33 (2010)
886–890.
[19] L. Zhang, W.R. Tschantz, P.J. Casey, Isolation and characterization of a prenyl-
cysteine lyase from bovine brain, J. Biol. Chem. 272 (1997) 23354–23359.
[20] J.Y. Lu, S.L. Hofmann, Thematic review series: lipid posttranslational modifica-
tions. Lysosomal metabolism of lipid-modified proteins, J. Lipid Res. 47 (2006)
1352–1357.
[21] S. Endo, T. Matsunaga, K. Horie, K. Tajima, Y. Bunai, V. Carbone, O. El-Kabbani,
A. Hara, Enzymatic characteristics of an aldo–keto reductase family protein
(AKR1C15) anditslocalization in rat tissues, Arch. Biochem. Biophys. 465 (2007)
136–147.
[22] M.P. Doyle, M. Yan, Attempted synthesis of casbene by intramolecular cyclo-
propanation, ARKIVOC 2002 (2002) Part viii 180–185.
[23] O. El-Kabbani, P.J. Scammells, J. Gosling, U. Dhagat, S. Endo, T. Matsunaga,
M. Soda, A. Hara, Structure-guided design, synthesis, and evaluation of sal-
icylic acid-based inhibitors targeting a selectivity pocket in the active site of
human 20␣-hydroxysteroid dehydrogenase (AKR1C1), J. Med. Chem. 52 (2009)
3259–3264.
[24] S. Endo, T. Matsunaga, H. Mamiya, C. Ohta, M. Soda, Y. Kitade, K. Tajima,
H.T. Zhao, O. El-Kabbani, A. Hara, Kinetic studies of AKR1B10, human aldose
reductase-like protein: endogenous substrates and inhibition by steroids, Arch.
Biochem. Biophys. 487 (2009) 1–9.
[25] S. Ishikura, N. Usami, K. Kitahara, T. Isaji, K. Oda, J. Nakagawa, A. Hara,
Enzymatic characteristics and subcellular distribution of a short-chain dehy-
drogenase/reductase family protein, P26h, in hamster testis and epididymis,
Biochemistry 40 (2001) 214–224.
[26] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual,
second ed., Cold Spring Harbor Laboratory, New York, 1989.
[49] T.M. Penning, M.C. Byrns, Steroid hormone transforming aldo–keto reductases
and cancer, Ann. N.Y. Acad. Sci. 1155 (2009) 33–42.
[50] J. Liu, G. Wen, D. Cao, Aldo–keto reductase family 1 member B1 inhibitors:
old drugs with new perspectives, Recent Pat. Anticancer Drug Discov. 4 (2009)
246–253.