Notes and references
8 (a) C. M. Kormos and N. E. Leadbeater, Tetrahedron, 2006,
2, 4728; (b) A. Tlili, N. Xia, F. Monnier and M. Taillefer, Angew.
6
1
(a) C.-J. Li, Chem. Rev., 2005, 105, 3095; (b) C.-J. Li and L. Chen,
Chem. Soc. Rev., 2006, 35, 68; (c) C.-J. Li, in Organic Synthesis
in Water, ed. U. M. Lindstrorm, Blackwell, New York, NY, 2007.
For reviews on the use of amphiphilic surfactants for organic
synthesis, see: (a) T. Dwars, E. Paetzold and G. Oehme, Angew.
Chem., Int. Ed., 2005, 44, 7174; (b) B. H. Lipshutz and S. Ghorai,
Aldrichimica Acta, 2008, 41, 59.
For selected recent reports on the use of an amphiphilic surfactant
in transition metal-catalyzed processes, see: (a) T. Nishikata,
A. R. Abela and B. H. Lipshutz, Angew. Chem., Int. Ed., 2010,
Chem., Int. Ed., 2009, 48, 8725; (c) D. Zhao, N. Wu, S. Zhang,
P. Xi, X. Su, J. Lan and J. You, Angew. Chem., Int. Ed., 2009,
48, 8729; (d) L. Jing, J. Wei, L. Zhou, Z. Huang, Z. Li and
X. Zhou, Chem. Commun., 2010, 46, 4767; (e) D. Yang and
H. Fu, Chem.–Eur. J., 2010, 16, 2366; (f) S. Maurer, W. Liu,
X. Zhang, Y. Jiang and D. Ma, Synlett, 2010, 976;
(g) K. G. Thankur and G. Sekar, Chem. Commun., 2010, 46, 6692.
9 J. Xu, X. Wang, C. Shao, D. Su, G. Cheng and Y. Hu, Org. Lett.,
2010, 12, 1964.
10 Only a few methods for the conversion of arylboronic acids to the
corresponding phenols in the presence of the oxidant have so far
been reported, see: (a) M. F. Hawthorne, J. Org. Chem., 1957,
22, 1001; (b) K. S. Webb and D. Levy, Tetrahedron Lett., 1995,
36, 5117; (c) J. Simon, S. Salzbrunn, G. K. S. Prakash,
N. A. Petasis and G. A. Olah, J. Org. Chem., 2001, 66, 633;
(d) B. R. Travis, B. P. Ciaramitaro and B. Borhan, Eur. J. Org.
Chem., 2002, 3429; (e) E. Kianmehr, M. Yahyaee and
K. Tabatabai, Tetrahedron Lett., 2007, 48, 2713; (f) G. K. S.
Prakash, S. Chacko, C. Panja, T. E. Thomas, L. Gurung,
G. Rasul, T. Mathew and G. A. Olah, Adv. Synth. Catal., 2009,
351, 1567.
11 (a) The effect of the concentration of Brij S-100 was investigated
and 10 mol% turned out to be optimal. For details, see ESIw;
(b) For the reported value (0.020 mM) of the critical micelle
concentration (cmc) for Brij S-100, see: S. K. Hait and
S. P. Moulik, J. Surfactants Deterg., 2001, 4, 303; (c) Other boron
derivatives were also employed for the process. While the reaction
of triphenylboroxin gave phenol 2d in high yield (77%), the use of
phenylboronic acid pinacol ester led to a considerably low yield
(29%). Furthermore, potassium phenyltrifluoroborate turned out
completely unreactive.
12 Lipshutz recently reported the reaction rate-enhancing effect
of NaCl for the reactions in water containing an amphiphilic
surfactant, see: S. R. K. Minkler, B. H. Lipshutz and N. Krause,
Angew. Chem., Int. Ed., 2011, 50, 7820 and references therein.
13 D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett., 1998,
39, 2937.
2
3
49, 781; (b) A. Krasovskiy, C. Duplais and B. H. Lipshutz, Org.
Lett., 2010, 12, 4742; (c) M. Lessi, T. Masini, L. Nucara, F. Bellina
and R. Rossi, Adv. Synth. Catal., 2011, 353, 501; (d) M. Gottardo,
A. Scarso, S. Paganelli and G. Strukul, Adv. Synth. Catal., 2010,
352, 2251; (e) A. Cavarzan, A. Scarso and G. Strukul, Green
Chem., 2010, 12, 790; (f) S. R. Cicco, G. M. Farnola,
C. Martinelli, F. Naso and M. Tiecco, Eur. J. Org. Chem., 2010,
2
275; (g) B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser,
T. Nishikata, C. Duplais and A. Krasovskiy, J. Org. Chem., 2011,
6, 4379; (h) B. H. Lipshutz, S. Ghorai, W. W. Y. Leong and
7
B. R. Taft, J. Org. Chem., 2011, 76, 5061; (i) B. S. Samant and
G. W. Kabalka, Chem. Commun., 2011, 47, 7236.
J. H. P. Tyman, Synthetic and Natural Phenols, Elsevier,
New York, 1996.
(a) C. A. Fyfe, in The Chemistry of the Hydroxyl Group,
ed. S. Patai, Wiley Interscience, New York, 1971, vol. 1;
4
5
(b) A. Kotschy and G. Timari, Heterocycles from Transition Metal
´
Catalysis, Springer, Dordrecht, 2005; (c) The Chemistry of Phenols,
ed. Z. Rappoport, Wiley-VCH, Weinheim, 2003.
R. E. Maleczka, Jr., F. Shi, D. Holmes and M. R. Smith, III,
J. Am. Chem. Soc., 2003, 125, 7792.
(a) K. W. Anderson, T. Ikawa, R. E. Tundel and S. L. Buchwald,
J. Am. Chem. Soc., 2006, 128, 10694; (b) M. C. Willis, Angew. Chem.,
Int. Ed., 2007, 46, 3402; (c) G. Chen, A. S. C. Chan and F. Y. Kwong,
Tetrahedron Lett., 2007, 48, 473; (d) B. J. Gallon, R. W. Kojima,
R. B. Kaner and P. L. Diaconescu, Angew. Chem., Int. Ed., 2007,
6
7
4
6, 7251; (e) T. Schulz, C. Torborg, B. Scha
R. Kadyrov, A. Borner and M. Beller, Angew. Chem., Int. Ed., 2009,
8, 918; (f) A. G. Sergeev, T. Schulz, C. Torborg, A. Spannenberg,
H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2009, 48, 7595.
¨
ffner, J. Huang, A. Zapf,
¨
14 P. Y. S. Lam, D. Bonne, G. Vincent, C. G. Clark and A. P. Combs,
Tetrahedron Lett., 2003, 44, 1691.
15 For details, see ESIw.
4
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11775–11777 11777