REPORTS
12. K. C. K. Swamy, N. S. Kumar, Acc. Chem. Res. 39,
324–333 (2006).
13. G. M. Sheldrick, Acta Crystallogr. B 31, 1776–1778
(1975).
14. G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett,
A. Voigt, J. Am. Chem. Soc. 121, 4922–4923 (1999).
15. J. B. Lambert, S. Zhang, S. M. Ciro, Organometallics 13,
2430–2443 (1994).
28. S. Grimme, J. Comput. Chem. 27, 1787–1799
ing electrophilic P cation coordinates donors and
activates C(sp3)–F bonds of fluoroalkanes in both
stoichiometric and catalytic reactions. The mech-
anism for this HDF catalysis illustrates the highly
fluorophilic nature of these stable and readily
accessible cations.
(2006).
29. M. F. Kuehnel, D. Lentz, T. Braun, Angew. Chem. Int. Ed.
52, 3328–3348 (2013).
30. K. P. Shine, W. T. Sturges, Science 315, 1804–1805
(2007).
31. A. Nova, R. Mas-Balleste, A. Lledos, Organometallics 31,
1245–1256 (2012).
16. M. Nava, C. A. Reed, Organometallics 30, 4798–4800
(2011).
17. R. F. Childs, D. L. Mulholland, A. Nixon, Can. J. Chem. 60,
801–808 (1982).
18. V. Gutmann, Coord. Chem. Rev. 18, 225–255 (1976).
19. F. J. Weigert, J. Org. Chem. 45, 3476–3483 (1980).
20. C. Douvris, O. V. Ozerov, Science 321, 1188–1190
(2008).
21. V. J. Scott, R. Celenligil-Cetin, O. V. Ozerov, J. Am. Chem.
Soc. 127, 2852–2853 (2005).
22. M. I. Bruce, J. Chem. Soc. A 1968, 1459–1464
(1968).
23. C. B. Caputo, D. W. Stephan, Organometallics 31, 27–30
(2012).
24. M. Alcarazo, C. Gomez, S. Holle, R. Goddard, Angew.
Chem. Int. Ed. 49, 5788–5791 (2010).
25. W. Gu, M. R. Haneline, C. Douvris, O. V. Ozerov, J. Am.
Chem. Soc. 131, 11203–11212 (2009).
26. C. Douvris, C. M. Nagaraja, C.-H. Chen, B. M. Foxman,
O. V. Ozerov, J. Am. Chem. Soc. 132, 4946–4953
(2010).
32. T. Stahl, H. F. T. Klare, M. J. Oestreich, J. Am. Chem. Soc.
135, 1248–1251 (2013).
33. T. Stahl, H. Klare, M. Oestreich, ACS Catal. 2013,
1578–1587 (2013).
References and Notes
1. D. Gudat, Acc. Chem. Res. 43, 1307–1316 (2010).
2. N. Burford, P. J. Ragogna, ACS Symp. Ser. 917, 280–292
(2005).
3. J. M. Slattery, S. Hussein, Dalton Trans. 41, 1808–1815
(2012).
4. T. Werner, Adv. Synth. Catal. 351, 1469–1481
(2009).
5. G. Wittig, U. Schöllkopf, Chem. Ber. 87, 1318–1330
(1954).
6. O. Sereda, S. Tabassum, R. Wilhelm, Top. Curr. Chem.
Acknowledgments: D.W.S. gratefully acknowledges the
financial support of the Natural Sciences and Engineering
Research Council (NSERC) of Canada and the award of a
Canada Research Chair. C.B.C. is grateful for the support of an
NSERC-CGS-D Scholarship. Metrical parameters for the
solid-state structure of compound 3 are available free of
charge from the Cambridge Crystallographic Data Centre
under reference number CCDC-951501.
291, 349–393 (2010).
7. M. Terada, M. Kouchi, Tetrahedron 62, 401–409 (2006).
8. T. W. Hudnall, Y. M. Kim, M. W. P. Bebbington,
D. Bourissou, F. P. Gabbaï, J. Am. Chem. Soc. 130,
10890–10891 (2008).
9. L. J. Hounjet, C. B. Caputo, D. W. Stephan, Dalton Trans.
42, 2629–2635 (2013).
Supplementary Materials
Materials and Methods
Supplementary Text
Figs. S1 to S16
10. L. J. Hounjet, C. B. Caputo, D. W. Stephan, Angew. Chem.
Int. Ed. 51, 4714–4717 (2012).
References
11. G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan,
27. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10,
6615–6620 (2008).
11 June 2013; accepted 9 August 2013
10.1126/science.1241764
Science 314, 1124–1126 (2006).
samples consisted of fully densified “rocks” of
isostatically hot pressed polycrystalline Mg2GeO4
(Ge-olivine) containing minor amounts of Ge-
pyroxene (<5 vol %) (11). We used the germanate
analog of Mg2SiO4 olivine because transforma-
tion into its denser polymorph can be reached
at pressures routinely achievable in the deforma-
tion apparatus. Stress, transformation progress,
and strain were measured in situ by using x-ray
powder diffraction (XRD) and radiographic im-
aging, respectively. AEs were recorded continuous-
ly on six channels. Description of the set-up is
given in the supplementary materials (fig. S1) (12).
Differential stress, strain, and acoustic activ-
ity for sample D1247 evolved as a function of
time (Fig. 1). The sample was first pressurized
to 4 GPa at room temperature then deformed at
a constant temperature of 973 K with a strain rate
Deep-Focus Earthquake Analogs
Recorded at High Pressure
and Temperature in the Laboratory
Alexandre Schubnel,1* Fabrice Brunet,2 Nadège Hilairet,3† Julien Gasc,3
Yanbin Wang,3 Harry W. Green II4
Phase transformations of metastable olivine might trigger deep-focus earthquakes (400 to
700 kilometers) in cold subducting lithosphere. To explore the feasibility of this mechanism,
we performed laboratory deformation experiments on germanium olivine (Mg2GeO4) under
differential stress at high pressure (P = 2 to 5 gigapascals) and within a narrow temperature
range (T = 1000 to 1250 kelvin). We found that fractures nucleate at the onset of the
olivine-to-spinel transition. These fractures propagate dynamically (at a nonnegligible fraction of
the shear wave velocity) so that intense acoustic emissions are generated. Similar to deep-focus
earthquakes, these acoustic emissions arise from pure shear sources and obey the Gutenberg-Richter
law without following Omori’s law. Microstructural observations prove that dynamic weakening
likely involves superplasticity of the nanocrystalline spinel reaction product at seismic strain rates.
he origin of deep-focus earthquakes fun- regime so that rocks yield by creep or flow rather
damentally differs from that of shallow than by brittle fracturing (4). Polymorphic phase
T
(<100 km) earthquakes (1), for which transitions in olivine have provided an attractive
theories of rock fracture rely on the properties alternative mechanism for deep-focus earthquakes
of coalescing cracks and friction (2–4). As pres- (5, 6). For instance, transformation of olivine to its
sure and temperature increase with depth, intra- high-pressure polymorphs could induce faulting in
crystalline plasticity dominates the deformation polycrystalline Mg2GeO4 olivine (7, 8). This was
further confirmed on silicate olivine, (Mg,Fe)2SiO4,
1Laboratoire de Géologie, CNRS UMR 8538, Ecole Normale
Supérieure, 75005 Paris, France. 2Institut des Sciences de la
Terre, CNRS, Université de Grenoble 1, 73370 Grenoble, France.
3GeoSoilEnviroCARS, University of Chicago, Argonne, IL 60439,
USA. Department of Earth Sciences, University of California at
Riverside, CA 92507, USA.
during the olivine-wadsleyite transition (9). Ad-
ditional experiments demonstrated that the mech-
anism produced acoustic emissions (AEs) (10).
In total, we performed eight experiments on
both powdered and sintered Ge-olivine samples
in the stability field of the spinel polymorph, at
confining pressures from 2 to 5 GPa and temper-
4
Fig. 1. Stress, strain and acoustic emission.
Evolution of temperature, differential stress, strain,
and AE rate during experiment D1247 performed
*Corresponding author. E-mail: aschubnel@geologie.ens.fr
†Present address: Unité Matériaux et Transformations, CNRS
UMR 8207, Université Lille 1, 59655 Villeneuve d’Ascq, France. atures between 973 and 1573 K (fig. S2). Sintered at 4 GPa effective mean stress.
1377