B. Higgins et al. / Chemosphere 42 (2001) 703±717
717
Manion, J.A., Dijks, J.H.M., Mulder, P., Louw, R., 1988.
Studies in gas-phase thermal hydrogenolysis. Part IV:
chlorobenzene and o-dichlorobenzene. Rec. Trav. Chim.
Pays-Bas 107 (6) 434±439 (J. R. Netherlands Chem. Soc.).
Manion, J.A., Louw, R., 1990. Relative gas-phase desubstitu-
tion rates of chlorobenzene derivatives by hydrogen atoms
near 1000 K. J. Chem. Soc. Perkin Trans. II (4), 551±557.
Marinov, N.M., Pitz, W.J., Westbrook, C.K., Castaldi, M.J.,
Senkan, S.M., 1996. Combust. Sci. Technol. 116 (1±6),
211±287.
suggests (1) the more C5 to C2 chemistry is needed, and
(2) that vinyl chloride is probably originating from
chlorinated C5 and C4 species.
With the lack of an active C±Cl scission reaction
pathway, chlorobenzene oxidation under moderate
temperatures and oxygen-rich conditions leads primarily
to chlorinated byproducts, where the stability of the
aromatic ring structure could provide routes to signi®-
cantly more toxic chlorinated byproducts.
Martinez, A., Cooper, C.D., Clausen, C.A., Geiger, C., 1995.
Kinetic modeling of H2O2 enhanced incineration of heptane
and chlorobenzene. Waste Manage. 15 (1), 43±53.
Mulder, P., Louw, R., 1987. Vapour-phase chemistry of arenes.
Part 13. Reactivity and selectivity in the gas-phase reactions
of hydroxyl radicals with monosubstituted benzenes at 563
K. J. Chem. Soc. Perkins Trans. 2 (9), 1167±1173.
Qun, M., Senkan, S.M., 1994. Chemical kinetic modeling of
fuel-rich ¯ames of CH2Cl2/CH4/O2/Ar. Combust. Sci.
Technol. 101, 103±134.
References
Bittker, D.A., 1991. Detailed mechanism for oxidation of
benzene. Combust. Sci. Technol. 79 (1±3), 49±72.
Brezinsky, K., Lovell, A.B., Glassman, I., 1990. The oxidation
of toluene perturbed by NO2. Combustion Science and
Technology 70, 33±46.
Chen, J.-Y., 1992. A perfectly-stirred-reaction description of
chemistry in turbulent non-premixed combustion of meth-
ane in air. Combust. Sci. Technol. 84, 45±50.
Ritter, E.R., Bozzelli, J.W., 1990. Reactions of chlorinated
benzenes in H2 and in H2/O2 mixtures: thermodynamic
implications on pathways to dioxin. Combust. Sci. Technol.
74, 117±135.
Dean, A.M., 1985. Predictions of pressure and temperature
eects upon radical-addition and recombination reactions.
J. Phys. Chem. 89, 4600±4608.
Ritter, E.R., Bozzelli, J.W., Dean, A.M., 1990. Kinetic study on
thermal decomposition of chlorobenzene diluted in H2.
J. Phys. Chem. 94 (6), 2493±2504.
Dean, A.M., Bozzelli, J.W., Ritter, E.R., 1991. CHEMACT: A
computer code to estimate rate constants for chemically
activated reactions. Combust. Sci. Technol. 80, 63±85.
Emdee, J.L., Brezinsky, K., Glassman, I., 1992. A kinetic-
model for the oxidation of toluene near 1200 K. J. Phys.
Chem. 96 (5), 2151±2161.
Ritter, E.R., Bozzelli, J.W., 1991. THERM: thermodynamic
property estimation for gas-phase radicals and molecules.
Int. J. Chem. Kinet. 23 (9), 767±778.
Ritter, E.R., Bozzelli, J.W., 1994. Pathways to chlorinated
dibenzodioxins and dibenzofurans from partial oxidation of
chlorinated aromatics by OH radical: thermodynamic and
kinetic insights. Combust. Sci. Technol. 101, 153±169.
Roesler, J.F., Yetter, R.A., Dryer, F.L., 1995. Kinetic inter-
actions of CO, NOx, and HCl emissions in postcombustion
gases. Combust. Flame 100, 495±504.
Frerichs, H., Tappe, M., Wagner, H.G., 1989. Reactions of
¯uorobenzene, chlorobenzene and bromobenzene with
atomic oxygen (O3P) in the gas phase. Z. Phys. Chem.
Neue Folge 162 (2), 147±159.
Hall, M.J., Lucas, D., Koshland, C.P., 1991. Measuring
chlorinated hydrocarbons in combustion by use of Fou-
rier-Transform infrared spectroscopy. Environmental Sci-
ence and Technology 25, 260±267.
Senkan, S.M., 1993. Survey of rate constants in the C/H/Cl/O
system. In: Gardiner, W.C. (Ed.), Combustion Chemistry,
second ed. Springer, NY.
Higgins, B.S., 1995. Experimental development of a combus-
tion-driven ¯ow reactor to study post-¯ame, thermal
oxidation of chlorinated hydrocarbons. Doctoral Disserta-
tion. University of California, Berkeley, CA.
Sommeling, P.M., Mulder, P., Louw, R., Avila, D.V., Lusztyk,
J., Ingold, K.U., 1993. Rate of reaction of phenyl radicals
with oxygen in solution and in the gas phase. J. Phys. Chem.
97 (32), 8361±8364.
Kee, R.J., Rupley, F.M., Miller, J.A., 1990. CHEMKIN II: A
Fortran Chemical Kinetics Package for the Analysis of Gas-
Phase Chemical Kinetics. Sandia National Laboratories,
Livermore, CA.
Tan, Y., Frank, P., 1996. A detailed comprehensive kinetic
model for benzene oxidation using the recent kinetic results.
In: Proceedings of the 26th Symposium (International) on
Combustion. The Combustion Institute, pp. 677±684.
Tsang, W., 1990. Fundamental processes in the incineration of
chloroaromatic compounds. Air Waste Manage. 10, 217±
255.
Louw, R., Rothuizen, J.W., Wegman, R.C.C., 1973. Vapour
phase chemistry of arenes. Part II. Thermolysis of chloro-
benzene and reactions with aryl radicals and chlorine and
hydrogen atoms at 500 K. J. Chem. Soc. Perkins Trans. 2,
1635±1640.
Venkat, C., Brezinsky, K., Glassman, I., 1982. High temper-
ature oxidation of aromatic hydrocarbons. 19th Symposium
(International) on Combustion, The Combustion institute,
pp. 143±152.
Lovell, A.B., Brezinsky, K., Glassman, I., 1988. Benzene
oxidation perturbed by NO2 addition. 22nd Symposium
(International) on Combustion. The Combustion Institute,
pp. 1063±1074.
Yang, M., Karra, S.B., Senkan, S.M., 1987. Equilibrium
analysis of combustion incineration. Hazard. Waste Haz-
ard. Mater. 4, 55±68.
Oppelt, E.T., 1986. Hazardous-waste destruction. Environ. Sci.
Technol. 20 (4), 312±318.
Mallard, W.G., Westley, F., Herron, J.T., Hampson, R.F.,
Frizzell, D.H., 1998. NIST Chemical Kinetic Database,
NIST, Washington, DC.
Zhang, H.-Y., McKinnon, J.T., 1995. Elementary reaction
modeling of high-temperature benzene combustion. Com-
bust. Sci. Technol. 107, 261±300.