C O M M U N I C A T I O N S
Table 2. Photocatalytic Transformation of Various Substratesa
a
Reaction conditions were: reactants, 20 µmol; photoirradiation time, 2 h; catalyst, 10 mg; buffered (pH 7) aqueous solution, 10 mL; temperature, 313
K. b Photoirradiation time, 6 h. Reactant, 0.5 mmol (which is not fully dissolved in the aqueous solution).
c
of 1. For chloro-substituted phenoxyacetic acids (14 and 9) on nTiO
runs 4, 5 and 7, 8), the initially formed chlorophenols (6 and 4)
are converted rapidly via substitution of -Cl by -OH to form
2
References
1) Coyle, J. D.; Carless, H. A. C. Photochemistry in Organic Synthesis; Royal
(
(
Society of Chemistry: London, 1986.
totally hydroxylated products.1 However, on mTiO
4,16
(runs 6, 9),
2
(2) (a) Bard, A. J. J. Phys. Chem. 1982, 86, 172-177. (b) Fox, M. A.; Dulay,
M. T. Chem. ReV. 1993, 93, 341-357. (c) Fox, M. A. Acc. Chem. Res.
the -Cl substitution is suppressed because of low adsorption degree
of the chlorophenols (D ) 0), thus affording them with high
selectivity (>72%). These examples clearly demonstrate that the
present mTiO system promotes a selective transformation of a well-
2
adsorbed molecule into a less-adsorbed molecule, so-labeled stick-
and-leave transformation.
1983, 16, 314-321. (d) Maldotti, A.; Molinari, A.; Amadelli, R. Chem.
ReV. 2002, 102, 3811-3836. (e) Mills, A.; Le Hunte, S. J. Photochem.
Photobiol. A: Chem. 1997, 108, 1-35. (f) Fujishima, A.; Rao, T. N.;
Tryk, D. A. J. Photochem. Photobiol. C: Photochem. ReV. 2000, 1, 1-21.
3) Ghosh-Mukerji, S.; Haick, H.; Schvartzman, M.; Paz, Y. J. Am. Chem.
Soc. 2001, 123, 10776-10777.
(
(
4) (a) Calza, P.; Paz e´ , C.; Pelizzetti, E.; Zecchina, A. Chem. Commun. 2001,
2
031-2032. (b) Llabr e´ s i Xamena, F. X.; Calza, P.; Lamberti, C.;
The most notable application of the present system is a direct
Prestipino, C.; Damin, A.; Bordiga, S.; Pelizzetti, E.; Zecchina, A. J. Am.
Chem. Soc. 2003, 125, 2264-2271.
hydroxylation of benzene (16) to phenol (1). On nTiO
produced 1 is sequentially oxidized by •OH to form further
hydroxylated products (runs 10, 11).15 On mTiO
, 16 is adsorbed
2
, the initially
(
5) (a) Antonelli, D. M.; Ying, J. Y. Angew. Chem., Int. Ed. Engl. 1995, 34,
2
014-2017. (b) He, X.; Antonelli, D. M. Angew. Chem., Int. Ed. 2002,
41, 214-229. (c) Dai, Q.; He, N.; Guo, Y.; Yuan, C. Chem. Lett. 1998,
2
1
113-1114. (d) Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.;
strongly (D ) 0.64), but 1 is scarcely adsorbed (D ) 0). The
sequential hydroxylation of 1 is therefore suppressed, thus affording
Stucky, G. D. Nature 1998, 396, 152-155. (e) Tian, B.; Yang, H.; Liu,
X.; Xie, S.; Yu, C.; Fan, J.; Tu, B.; Zhao, D. Chem. Commun. 2002, 1824-
1
825. (f) Zhang, L.; Yu, J. C. Chem. Commun. 2003, 2078-2079. (g)
1
with very high selectivity (>80%) (runs 12, 13). The 0.5 mmol
scale experiment is also successful for the production of 1 (run
4). To the best of our knowledge, this is a photocatalytic system
Peng, Z.; Shi, Z.; Liu, M. Chem. Commun. 2000, 2125-2126.
(6) (a) Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Chem. Mater. 2003, 15,
2
280-2286. (b) Yu, J. C.; Zhang, L.; Yu, J. New J. Chem. 2002, 26,
1
416-420. (c) Uekawa, N.; Suzuki, M.; Ohmiya, T.; Mori, F.; Wu, Y. J.;
achieving the highest selectivity of 1 among those which have been
Kakegawa, K. J. Mater. Res. 2003, 18, 797-803. (d) Yoo, K.; Choi, H.;
Dionysiou, D. D. Chem. Commun. 2004, 2000-2001. (e) Yu, J. C.; Zhang,
L.; Yu, J. Chem. Mater. 2002, 14, 4647-4653. (f) Yu, J.; Yu, J. C.; Leung,
M. K.-P.; Ho, W.; Cheng, B.; Zhao, X.; Zhao, J. J. Catal. 2003, 217,
69-78.
7
proposed so far (<21% selectivity) (Table S2 ). As well-known,
the synthesis of 1 from 16 is currently carried out industrially via
a multistep cumene process, but the process suffers from low
selectivity, high energy consumption, and formation of a large
quantity of byproducts. So far, various catalytic processes have been
proposed as alternatives, where some of them achieve higher
selectivity of 1 than the system proposed here, but they require
(7) See Supporting Information.
(
8) D ) (C
0
- C
e
)/C
e
, where C
e
0
denotes the initial concentration of substrate
in solution and C denotes the equilibrium concentration of the substrate
in the solution after stirring with catalyst (313 K; 0.5 h).
(
9) Almost no reaction occurs in the presence of D-mannitol, a typical •OH
scavenger (100-fold molar excess based on the substrate).
expensive oxidants, noble metals, or severe reaction conditions
(10) (a) Ohtani, B.; Ogawa, Y.; Nishimoto, S.-i. J. Phys. Chem. B 1997, 101,
7
3746-3752. (b) Sclafani, A.; Palmisano, L.; Schiavello, M. J. Phys. Chem.
(Table S3). The system proposed here exhibits significant advan-
1990, 94, 829-834. (c) Ohtani, B.; Okugawa, Y.; Nishimoto, S.-i.; Kagiya,
tages: (i) additive-free, (ii) cheap source of oxidant (H
2
O), and
T. J. Phys. Chem. 1987, 91, 3550-3555.
(
(
(
11) Janzen, E. G.; Nutter, D. E., Jr.; Davis, E. R.; Blackburn, B. J.; Poyer, J.
L.; McCay, P. B. Can. J. Chem. 1978, 56, 2237-2242.
12) Lawless, D.; Serpone, N.; Meisel, D. J. Phys. Chem. 1991, 95, 5166-
5170.
(
iii) mild reaction condition (room temperature). Photocatalytic
phenol synthesis may be realized by applying the basic concept
proposed here, and the present system has a potential to enable
this and other photocatalytic organic synthesis in an economically
and environmentally friendly way.
13) Catalytic activity of mTiO
area; mTiO (65) clearly shows higher substrate conversions than mTiO
(37) (Figure 1B). This is because the former contains a higher quantity
of anatase phase and hence produces a higher quantity of •OH. mTiO
61) shows higher substrate conversions than mTiO (65) (Figure 1B),
2
depends on its anatase content and surface
2
2
-
2
-
Acknowledgment. This work is supported by the Grant-in-Aids
(
2
despite the lower anatase content. This is because the former, having twice
larger surface area than the latter (Table 1), has larger anatase surface
area.
for Scientific Research (No. 15360430) and on Priority Areas
“
Fundamental Science and Technology of Photofunctional Inter-
faces (417)” (No. 17029037) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (MEXT).
(14) Tanaka, K.; Reddy, K. S. N. Appl. Catal. B 2002, 39, 305-310.
15) Hashimoto, K.; Kawai, T.; Sakata, T. J. Phys. Chem. 1984, 88, 4083-
088.
(
4
Supporting Information Available: Materials and Methods,
Discussion, Tables S1-S4, and Figures S1 and S2. This material is
available free of charge via Internet http://pubs.acs.org.
(16) Al-Ekabi, H.; Serpone, N.; Pelizzetti, E.; Minero, C.; Fox, M. A.; Draper,
R. B. Langmuir 1989, 5, 250-255.
JA053265S
12822 J. AM. CHEM. SOC.
9
VOL. 127, NO. 37, 2005