Page 5 of 6
Journal of the American Chemical Society
1
38, 5978–5983. (c) Carling, C. J.; Olejniczak, J.; Foucault-Collet, A.;
(22) (a) Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi,
R.; Pinson, J.; Savéant, J. M. Covalent Modification of Carbon Surfaces by
Aryl Radicals Generated from the Electrochemical Reduction of Diazonium
Salts. J. Am. Chem. Soc. 1997, 119, 201–207. (b) Andrieux, C. P.; Pinson,
J. The Standard Redox Potential of the Phenyl Radical/Anion Couple. J.
Am. Chem. Soc. 2003, 125, 14801–14806.
Collet, G.; Viger, M. L.; Nguyen Huu, V. A.; Duggan, B. M.; Almutairi, A.
Efficient Red Light Photo-Uncaging of Active Molecules in Water upon
Assembly into Nanoparticles. Chem. Sci. 2016, 7, 2392–2398.
1
2
3
4
5
6
7
8
9
(11) (a) Cocquet, G.; Ferroud, C.; Guy, A. A Mild and Efficient
Procedure for Ring-Opening Reactions of Piperidine and Pyrrolidine
Derivatives by Single Electron Transfer Photooxidation. Tetrahedron 2000,
(23) For selected examples, see: (a) Zou, Y. Q.; Chen, J. R.; Liu, X. P.;
Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Highly Efficient
Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox
Catalysis Using Visible Light. Angew. Chem., Int. Ed. 2012, 51, 784–788.
(b) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. Mechanistic
Insights and Kinetic Analysis for the Oxidative Hydroxylation of
Arylboronic Acids by Visible Light Photoredox Catalysis: A Metal-Free
Alternative. J. Am. Chem. Soc. 2013, 135, 13286–13289. (c) Yu, X.; Cohen,
S. M. Photocatalytic Metal-Organic Frameworks for the Aerobic Oxidation
of Arylboronic Acids. Chem. Commun. 2015, 51, 9880–9883. (d) Xie, H.
Y.; Han, L. S.; Huang, S.; Lei, X.; Cheng, Y.; Zhao, W.; Sun, H.; Wen, X.;
Xu, Q. L. N-Substituted 3(10H)-Acridones as Visible-Light, Water-Soluble
Photocatalysts: Aerobic Oxidative Hydroxylation of Arylboronic Acids. J.
Org. Chem. 2017, 82, 5236–5241.
5
6, 2975–2984. (b) Cocquet, G.; Ferroud, C.; Simon, P.; Taberna, P. L.
Single Electron Transfer Photoinduced Oxidation of Piperidine and
Pyrrolidine Derivatives to the Corresponding Lactams. J. Chem. Soc.
Perkin Trans. 2 2000, 1147–1153.
(12) For selected examples, see: (a) Pitre, S. P.; McTiernan, C. D.;
Ismaili, H.; Scaiano, J. C. Metal-Free Photocatalytic Radical
Trifluoromethylation Utilizing Methylene Blue and Visible Light
Irradiation. ACS Catal. 2014, 4, 2530–2535. (b) Kalaitzakis, D.; Kouridaki,
A.; Noutsias, D.; Montagnon, T.; Vassilikogiannakis, G. Methylene Blue as
a Photosensitizer and Redox Agent: Synthesis of 5-Hydroxy-1H-Pyrrol-
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
(5H)-Ones from Furans. Angew. Chem., Int. Ed. 2015, 54, 6283–6287. (c)
Jiang, H.; Mao, G.; Wu, H.; An, Q.; Zuo, M.; Guo, W.; Xu, C.; Sun, Z.;
Chu, W. Synthesis of Dibenzocycloketones by Acyl Radical Cyclization
from Aromatic Carboxylic Acids Using Methylene Blue as a Photocatalyst.
Green Chem. 2019, 21, 5368–5373.
(24) (a) Pavlishchuk, V. V; Addison, A. W. Conversion Constants for
Redox Potentials Measured versus Different Reference Electrodes in
Acetonitrile Solutions at 25 ℃. Inorg. Chim. Acta 2000, 298, 97–102. (b)
Barbante, G. J.; Kebede, N.; Hindson, C. M.; Doeven, E. H.; Zammit, E.
M.; Hanson, G. R.; Hogan, C. F.; Francis, P. S. Control of Excitation and
Quenching in Multi-Colour Electrogenerated Chemiluminescence Systems
through Choice of Co-Reactant. Chem. - Eur. J. 2014, 20, 14026–14031.
(13) (a) Lee, J.; Papatzimas, J. W.; Bromby, A. D.; Gorobets, E.;
Derksen, D. J. Thiaporphyrin-Mediated Photocatalysis Using Red Light.
RSC Adv. 2016, 6, 59269–59272. (b) Matsuzaki, K.; Hiromura, T.;
Tokunaga, E.; Shibata, N. Trifluoroethoxy-Coated Subphthalocyanine
Affects Trifluoromethylation of Alkenes and Alkynes Even under Low-
Energy Red-Light Irradiation. ChemistryOpen 2017, 6, 226–230. (c)
Yerien, D. E.; Cooke, M. V.; García Vior, M. C.; Barata-Vallejo, S.;
Postigo, A. Radical Fluoroalkylation Reactions of (Hetero)Arenes and
Sulfides under Red Light Photocatalysis. Org. Biomol. Chem. 2019, 17,
(c) Schwarz, J.; König, B. Metal-Free, Visible-Light-Mediated,
Decarboxylative Alkylation of Biomass-Derived Compounds. Green
Chem. 2016, 18, 4743–4749.
(25) Wood, P. M. The Redox Potential of the System Oxygen-
Superoxide. FEBS Lett. 1974, 44, 22-24.
3
741–3746.
(14) Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis,
(26) For selected examples, see: (a) Finney, L. C.; Mitchell, L. J.; Moody,
3
T.; Campos, L. M. Photoredox Catalysis Using Infrared Light via Triplet
Fusion Upconversion. Nature 2019, 565, 343–346.
C. J. Visible Light Mediated Oxidation of Benzylic sp C-H Bonds Using
Catalytic 1,4-Hydroquinone, or Its Biorenewable Glucoside, Arbutin, as a
Pre-Oxidant. Green Chem. 2018, 20, 2242–2249. (b) Zhang, Y.; Riemer,
D.; Schilling, W.; Kollmann, J.; Das, S. Visible-Light-Mediated Efficient
Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS
Catal. 2018, 8, 6659–6664. (c) Ren, L.; Yang, M. M.; Tung, C. H.; Wu, L.
Z.; Cong, H. Visible-Light Photocatalysis Employing Dye-Sensitized
Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catal.
(15) Ravetz, B. D.; Tay, N. E. S.; Joe, C. L.; Sezen-Edmonds, M.;
Schmidt, M. A.; Tan, Y.; Janey, J. M.; Eastgate, M. D.; Rovis, T. Spin-
Forbidden Excitation Enables Infrared Photoredox Catalysis. 2020, DOI:
1
0.26434/chemrxiv.12124215.v1.
(16) (a) Laursen, B. W.; Krebs, F. C. Synthesis of a Triazatriangulenium
Salt. Angew. Chem., Int. Ed. 2000, 39, 3432–3434. (b) Delgado, I. H.;
Pascal, S.; Wallabregue, A.; Duwald, R.; Besnard, C.; Guénée, L.; Nançoz,
C.; Vauthey, E.; Tovar, R. C.; Lunkley, J. L.; Muller, G.; Lacour, J.
Functionalized Cationic [4]Helicenes with Unique Tuning of Absorption,
Fluorescence and Chiroptical Properties up to the Far-Red Range. Chem.
Sci. 2016, 7, 4685–4693.
2
017, 7, 8134–8138.
(27) For selected examples, see: (a) Nguyen, J. D.; Tucker, J. W.;
Konieczynska, M. D.; Stephenson, C. R. J. Intermolecular Atom Transfer
Radical Addition to Olefins Mediated by Oxidative Quenching of
Photoredox Catalysts. J. Am. Chem. Soc. 2011, 133, 4160–4163. (b)
Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. Visible
Light-Mediated Atom Transfer Radical Addition via Oxidative and
Reductive Quenching of Photocatalysts. J. Am. Chem. Soc. 2012, 134,
8875–8884. (c) Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.; Reiser, O.
(17) Sørensen, T. J.; Nielsen, M. F.; Laursen, B. W. Synthesis and
+
Stability of N,N′-Dialkyl-1,13-Dimethoxyquinacridinium (DMQA ): A
[
1
4]Helicene with Multiple Redox States. ChemPlusChem 2014, 79, 1030–
035.
18) (a) Mei, L.; Veleta, J. M.; Bloch, J.; Goodman, H. J.; Pierce-Navarro,
2
[Cu(Dap) Cl] as an Efficient Visible-Light-Driven Photoredox Catalyst in
(
Carbon-Carbon Bond-Forming Reactions. Chem. - Eur. J. 2012, 18, 7336–
7340. (d) Paria, S.; Pirtsch, M.; Kais, V.; Reiser, O. Visible-Light-Induced
Intermolecular Atom-Transfer Radical Addition of Benzyl Halides to
Olefins: Facile Synthesis of Tetrahydroquinolines. Synthesis 2013, 45,
2689–2698. (e) Rawner, T.; Lutsker, E.; Kaiser, C. A.; Reiser, O. The
Different Faces of Photoredox Catalysts: Visible-Light-Mediated Atom
Transfer Radical Addition (ATRA) Reactions of Perfluoroalkyl Iodides
with Styrenes and Phenylacetylenes. ACS Catal. 2018, 8, 3950–3956.
D.; Villalobos, A.; Gianetti, T. L. Tunable Carbocation-Based Redox
Active Ambiphilic Ligands: Synthesis, Coordination and Characterization.
Dalton Trans. 2020, DOI: 10.1039/d0dt00419g. (b) Duwald, R.; Pascal, S.;
Bosson, J.; Grass, S.; Besnard, C.; Bürgi, T.; Lacour, J. Enantiospecific
Elongation of Cationic Helicenes by Electrophilic Functionalization at
Terminal Ends. Chem. - Eur. J. 2017, 23, 13596–13601.
(19) (a) Bosson, J.; Gouin, J.; Lacour, J. Cationic Triangulenes and
Helicenes: Synthesis, Chemical Stability, Optical Properties and Extended
Applications of These Unusual Dyes. Chem. Soc. Rev. 2014, 43, 2824–
(28) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Dual
Gold/Photoredox-Catalyzed C(sp)-H Arylation of Terminal Alkynes with
Diazonium Salts. Chem. Sci. 2016, 7, 89–93.
2
840. (b) Kel, O.; Fürstenberg, A.; Mehanna, N.; Nicolas, C.; Laleu, B.;
Hammarson, M.; Albinsson, B.; Lacour, J.; Vauthey, E. Chiral Selectivity
in the Binding of [4]Helicene Derivatives to Double-Stranded DNA. Chem.
(29) Shaikh, A. C.; Hossain, M.; Moutet, J.; Veleta, J. M.; Bloch, J.;
Andrei, V.; Gianetti, T. L. Stable Helicene Radicalsꢀ: Synthesis , Structure
-
Eur. J. 2013, 19, 7173–7180.
,
Physical
Properties,
and
Photocatalysis.
2020,
DOI:
(20) Nicolas, C.; Herse, C.; Lacour, J. Catalytic Aerobic Photooxidation
10.26434/chemrxiv.12408245.v1.
of Primary Benzylic Amines Using Hindered Acridinium Salts.
Tetrahedron Lett. 2005, 46, 4605–4608.
(21) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S.
Room-Temperature C-H Arylation: Merger of Pd-Catalyzed C-H
Functionalization and Visible-Light Photocatalysis. J. Am. Chem. Soc.
2
011, 133, 18566–18569.
5
ACS Paragon Plus Environment