This variation in the polarity of the γ-CD cavity as the com-
(c) A. Granados and R. H. de Rossi, J. Am. Chem. Soc., 1995, 117,
690; (d ) A. Granados and R. H. de Rossi, J. Org. Chem., 2001, 66,
3
plexating substrates vary becomes evident when comparing
X
X
w
1548; (e) M. A. Fernández and R. H. de Rossi, J. Org. Chem., 2001,
66, 4399.
the values of kCD and k
. The values obtained (Table 1) show
X
X
that k
w
is approximately 10 times lower than kCD for 3-CH . In
3
8
(a) O. S. Tee and J. M. Bennett, J. Am. Chem. Soc., 1988, 110, 269;
view of the previous considerations, we have not been able
(
b) O. S. Tee, Adv. Phys. Org. Chem., 1994, 29, 1.
X
to obtain the value of kCD for 4-CH . However we can estimate
9 V. Daffe and J. Fastrez, J. Chem. Soc., Perkin Trans. 2, 1983, 789.
10 As indicated in the experimental section the kinetic results have been
obtained in the presence of a 3.85% (v/v) of acetonitrile.
11 A. R. Khan, P. Forgo, K. J. Stine and V. T. D’Souza, Chem. Rev.,
1998, 98, 1977.
3
a maximum value which confirms the inequality which is
necessary for the simplification of equation 1 to equation 3,
X
w
X
X
namely k
ӷ kCD
K
CD[γ-CD]. We can thus obtain a maximum
4
-CH
3
Ϫ2 Ϫ1
value of k CD = 6.99 × 10 s . The lower polarity of γ-CD
1
2 C. J. Easton and S. F. Lincoln, Modified Cyclodextrins, Imperial
College Press, London, 1999.
motivated by the complexation of 4-CH causes the value of
3
X
k
CD to be at least 100 times lower than that obtained in bulk
13 W. Saenger, C. Niemann, R. Herbst, W. Hinrichs and T. Steiner, Pure
Appl. Chem., 1993, 65, 809.
4 W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe,
K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev., 1998, 98, 1787.
5 (a) R. I. Gelb, L. M. Schwartz, J. J. Bradshaw and D. A. Laufer,
Bioorg. Chem., 1980, 9, 299; (b) R. I. Gelb, L. M. Schwartz and
D. A. Laufer, Bioorg. Chem., 1982, 11, 274.
16 (a) L. D. Melton and K. N. Slessor, Carbohydr. Res., 1971, 18, 29; (b)
S. E. Brown, J. H. Coates, D. R. Coghlan, C. J. Easton, S. J. van Eyk,
W. Janowski, A. Leopore, S. F. Lincoln, Y. Luo, B. L. May,
D. S. Schiesser, P. Wang and M. L. Williams, Aust. J. Chem., 1993,
46, 953.
water, contrasting with the behavior obtained in 3-CH3.
1
It is important to note that this behavior has not been
observed in the presence of α-CD or β-CD. This is due to the
fact that the aromatic rings of the benzoyl chlorides fit better to
the size of the α- and β-CD cavities with the consequent expul-
sion of a greater number of water molecules. This expulsion
causes the interior of the cavities of the complexed α- and β-CD
to be more hydrophobic than in the case of γ-CD and con-
1
X
sequently the rate constant kCD will be very small, confirming
X
w
X
X
the inequality k
ӷ kCD
K
CD[CD].
1
7 T. W. Bentley and R. O. Jones, J. Chem. Soc., Perkin Trans. 2, 1993,
351.
8 H. J. Schneider, F. Hacket and V. Rüdiger, Chem. Rev., 1998, 98,
2
1
Conclusions
1
755.
X
The studies carried out allow us to conclude that the solvolysis
of benzoyl chlorides in the presence of cyclodextrins shows two
clearly differentiated behaviors: when the solvolysis mechanism
occurs through an associative path the presence of cyclo-
dextrins catalyzes the process through the reaction with its
hydroxyl group C(6). The substituted benzoyl chlorides with
electron-donating groups, which undergo solvolysis through a
dissociative path, show a reduction of the rate constant caused
by the presence of the cyclodextrins. This behavior is due to
the complexation of the substrates with the cyclodextrins and
also to the limited value of the rate constant in the cavity of
the cyclodextrin, due to its low capacity to solvate the leaving
19 For 3-CF
3
, 3-NO
2
and 4-NO
2
only a maximum value of KCD is
obtained, due to the fact that it is not possible to obtain it experi-
mentally. The maximum values have been calculated, confirming
X
the inequality 1 ӷ KCD[β-CD] for the maximum concentration of
cyclodextrin used in the kinetic experiments. By using the maximum
X
X
value of KCD a minimum value of kCD can be computed.
20 Y. Matsui and K. Mochida, Bull. Chem. Soc. Jpn., 1979, 52, 2808.
21 Y. Matsui, T. Nishioka and T. Fujita, Top. Curr. Chem., 1985, 128, 61.
2 C. Hansch and A. Leo, Substituent Constant for Correlation Analysis
in Chemistry and Biology, John Wiley & Sons, New York, 1979.
3 L. García-Río, J. R. Leis and J. A. Moreira, J. Am. Chem. Soc., 2000,
2
2
2
1
22, 10325.
4 D. Hallen, A. Schön, I. Shehatta and I. Wadsö, J. Chem. Soc.,
Faraday Trans., 1992, 88, 2859.
Ϫ
group, Cl .
25 W. Saenger, Angew. Chem., Int. Ed. Engl., 1980, 19, 344.
6 I. Sanemasa, T. Osajima and T. Deguchi, Bull. Chem. Soc. Jpn.,
2
The presence of α- and γ-CD causes alterations in behavior
which are related to: (i) the stability of the substrate–cyclo-
dextrin complexes: it causes the solvolysis rate of the benzoyl
1
990, 63, 2814.
2
7 R. L. Van Etten, J. F. Sebastian, G. A. Clowes and M. L. Bender,
J. Am. Chem. Soc., 1967, 89, 3242.
chlorides 4-NO , 3-NO and 3-CF to be insensitive to the
2
2
3
28 B. Uno, N. Kaida, T. Kawakita, K. Kano and T. Kubota, Chem.
Pharm. Bull., 1988, 36, 3753.
presence of α-CD; (ii) the stoichiometry of the complexes,
causing the formation of complexes α-CD : benzoyl chloride
with 1 : 1 stoichiometries for those which are substituted in
the meta position and 2 : 1 for those substituted in the para
position; (iii) the displacement of water in the interior of
the cavity, causing the solvolysis reaction to be detected in the
interior of the cavity of γ-CD when meta-substituted benzoyl
chlorides are used.
29 N. J. Turro, T. Okubo and C. J. Chung, J. Am. Chem. Soc., 1982, 104,
3
953.
3
0 G. S. Cox, N. J. Turro, N. C. Yang and M. J. Chem., J. Am. Chem.
Soc., 1984, 106, 422.
1 S. Hamai, J. Phys. Chem., 1990, 94, 2595.
2 V. Ramamurthy and D. F. Eaton, Acc. Chem. Res., 1988, 21, 300.
33 G. S. Cox, P. J. Hauptmann and N. Turro, J. Photochem. Photobiol.,
1984, 39, 597.
4 T. W. Bentley, G. E. Carter and H. C. Harris, J. Chem. Soc., Perkin
Trans. 2, 1985, 983.
3
3
3
Acknowledgements
35 T. W. Bentley and I. S. Koo, J. Chem. Soc., Perkin Trans. 2, 1989,
385.
36 J. Lehmann, E. Kleinpeter and J. Krechl, J. Inclusion Phenom., 1991,
10, 233.
1
Financial support from the Xunta de Galicia (PGIDT00PX-
I20907PR and PGIDT03-PXIC20905PN) and Ministerio de
Ciencia y Tecnología (Project BQU2002-01184) is gratefully
acknowledged.
3
7 M. V. Rekharsky, F. P. Schwarz, Y. B. Tewari, R. N. Goldberg,
M. Tanaka and Y. Yamashoji, J. Phys. Chem., 1994, 98, 4098.
8 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
9 P. C. Manor and W. Saenger, J. Am. Chem. Soc., 1974, 96, 3630.
0 K. Lindner and W. Saenger, Acta Crystallogr., Sect. B, 1982, 38, 203.
1 K. Lindner and W. Saenger, Angew. Chem., Int. Ed. Engl., 1978, 17,
694.
3
3
4
4
References
1
2
B. D. Song and W. P. Jencks, J. Am. Chem. Soc., 1989, 111, 8470.
(a) W. P. Jencks, Chem. Rev., 1972, 72, 705; (b) R. A. More O’Ferrall,
J. Chem. Soc. B, 1970, 274.
42 H. Schlenk and D. M. Sand, J. Am. Chem. Soc., 1961, 83, 2312.
43 K. Harata, Chem. Lett., 1984, 641.
3
4
J. Szejtli, Cyclodextrin Technology, Kluwer Academic Publishers,
Dordrecht, 1988.
M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer-
Verlag, New York, 1977.
44 K. Harata, Bull. Chem. Soc. Jpn., 1987, 60, 2763.
45 S. J. Heyes, N. J. Clayden and C. M. Dobson, Carbohydr. Res., 1992,
233, 1.
46 M. G. Usha and R. J. Wittebort, J. Am. Chem. Soc., 1992, 114, 1541.
47 G. Barone, G. Castronuovo, P. Del Vecchio, V. Elia and
M. Muscetta, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 2089.
48 H. Fujiwara, H. Arakawa, S. Murata and Y. Sasaki, Bull. Chem. Soc.
Jpn., 1987, 60, 3891.
5
6
7
K. Takahashi, Chem. Rev., 1998, 98, 2013.
R. Beslow and S. D. Dong, Chem. Rev., 1998, 98, 1997.
(a) A. V. Veglia and R. H. de Rossi, J. Org. Chem., 1988, 53, 5281;
(
b) M. Barra and R. H. de Rossi, J. Org. Chem., 1989, 54, 5020;
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2, 1 1 8 6 – 1 1 9 3
1193