R. Zugle, T. Nyokong / Journal of Molecular Catalysis A: Chemical 358 (2012) 49–57
57
oxygen quantum yields also in DMF were found to be 0.68 and
.62 for 3a and 3b respectively. The singlet oxygen generating
ability was maintained in the fiber for both phthalocyanines and
these polymeric fiber materials incorporating phthalocyanines fur-
ther found to be promising materials for the photo-conversion of
[23] J. Kossanyi, D. Chachraoui, Int. J. Photoenergy 2 (2000) 9–15.
[24] S. Fery-Forgues, D. Lavabre, J. Chem. Educ. 76 (1999) 1260–1264.
[25] T. Shen, Z.-I. Yuan, H.-J. Xu, Dyes Pigments 11 (1989) 77–80.
[26] X.-F. Zhang, H.-J. Xu, J. Chem. Soc., Faraday Trans. 89 (1993) 3347–3351.
0
[27] T. Nyokong, Coord. Chem. Rev. 251 (2007) 1707–1722.
[
28] T. Nyokong, E. Antunes, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The
Handbook of Porphyrin Science, vol. 7, Academic Press/World Scientific, New
York/Singapore, 2010, pp. 247–349 (Chapter 34).
4
-nitrophenol.
[29] A. Ogunsipe, D. Maree, T. Nyokong, Mol. Struct. 650 (2003) 131–140.
[30] A. Ogunsipe, T. Nyokong, J. Photochem. Photobiol. A 173 (2005) 211–220.
[31] C.S. Foote, in: H.H. Wasserman, R.W. Murray (Eds.), Singlet Oxygen, Academic
Press, New York/San Francisco/London, 1979, pp. 139–171.
Acknowledgments
This work was supported by the Department of Science and
Technology (DST) and National Research Foundation (NRF) of South
Africa through DST/NRF South African Research Chairs Initiative for
Professor of Medicinal Chemistry and Nanotechnology and Rhodes
University.
[32] S. Tang, C. Shao, Y. Liu, S. Li, R. Mu, J. Phys. Chem. Solids 68 (2007) 2337–2340.
[33] M.J. Stillman, T. Nyokong, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:
Properties and Applications, vol. 1, VCH, New York, NY, 1989 (Chapter 3).
[
34] T. Nyokong, H. Isago, J. Porphyrins Phthalocyanines 8 (2004) 1083–1090.
[35] A. Ogunsipe, J.-Y. Chen, T. Nyokong, New J. Chem. 28 (2004) 822–827.
[36] H.J. Harman, J. Porphyrins Phthalocyanines 6 (2002) 73–77.
´
[
37] J. Mosinger, K. Lang, P. Kubàt, J. S y´ kora, M. Hof, L. Pll sˇ til, B. Mosinger Jr., J.
Fluoresc. 19 (2009) 705–713.
References
[
38] D.W. Mayo, F.A. Miller, R.W. Hannah, Course Notes on the Interpretation of
Infrared and Raman Spectra, John Wily and Sons, Inc., New Jersey, 2004 (Chap-
ter 5).
[39] V. Duarte, D. Gasparutto, L.F. Yamaguchi, J.L. Ravanat, G.R. Martinez, M.H.G.
Medeiros, P.D. Mascio, J. Cadet, J. Am. Chem. Soc. 122 (2000) 12622–12628.
[40] G. Porcal, S.G. Bertolotti, C.M. Previtali, M.V. Encinas, Phys. Chem. Chem. Phys.
5 (2003) 4123–4128.
[
1] S.D. Doyce, M.R. Hoffman, P.A. Hong, L.M. Moberly, Environ. Sci. Technol. 17
1983) 602–611.
2] D. Gu, Q. Chen, X. Tang, F. Gan, S. Shen, K. Liu, H. Xu, Opt. Commun. 121 (1995)
25–129.
(
[
1
[
[
3] L. Ma, Y. Zhang, P. Yuan, Opt. Express 18 (2010) 17666–17971.
4] L. Kaestner, M. Cesson, K. Kassab, T. Christensen, P.D. Edminson, M.J. Cook, T.
Chambrier, G. Jori, Photochem. Photobiol. Sci. 2 (2003) 660–667.
[41] M.O. Liu, C.-H. Tai, A.T. Hu, T.-H. Wei, J. Organomet. Chem. 689 (2004)
2138–2143.
[
[
[
[
[
5] A.C. Tedesco, J.C.G. Rotta, C.N. Lunardi, Curr. Org. Chem. 7 (2003) 187–196.
6] M. Durmus, T. Nyokong, Photochem. Photobiol. Sci. 6 (2007) 659–668.
7] A.G. Gürek, Ö. Bekaro g˘ lu, J. Chem. Soc., Dalton Trans. (1994) 1419–1423.
8] A. Beck, K.M. Mangold, M. Hanack, Chem. Ber. 124 (1991) 2315–2321.
9] P. Tau, T. Nyokong, J. Mol. Catal. A: Chem. 273 (2007) 149–155.
[42] L.A. Tomachynski, I.N. Tretyakova, V. Ya Chernii, S.V. Volkov, M. Kowalska,
J. Legendziewicz, Y.S. Greasymchuk, S. Radzki, Inorg. Chim. Acta 361 (2008)
2569–2581.
[43] J.A. Lacey, D. Phillips, Photochem. Photobiol. Sci. 1 (2002) 378–383.
[44] T. Ngai, G. Zhang, X. Li, D.K.P. Ng, C. Wu, Langmuir 17 (2001) 1381–1383.
[45] I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, J. Photochem. Photobiol.
A: Chem. 140 (2001) 215–222.
[
10] M.D. Maree, T. Nyokong, K. Suhling, D. Philips, J. Porphyrins Phthalocyanines 6
(
2002) 373–376.
[
[
11] M. Hu, Y. Xu, J. Zhao, Langmuir 20 (2004) 6302–6307.
[46] V. Purohit, A.K. Basu, Chem. Res. Toxicol. 13 (2000) 673–692.
[47] I.J. Alinnor, M.A. Nwachukwu, J. Environ. Chem. Ecotoxicol. 3 (2011) 32–36.
[48] N.D. Zakaria, N.A. Yusof, J. Haron, A.H. Abdullah, Int. J. Mol. Sci. 10 (2009)
354–365.
[49] X. Shen, L. Zhu, G. Liu, H. Yu, H. Tang, Environ. Sci. Technol. 42 (2008) 1687–1692.
[50] F.R. Zaggot, N.A. Ghalwa, J. Environ. Manage. 86 (2008) 291–296.
[51] R.P.S. Suri, J. Liu, D.W. Hand, J.C. Crittenden, D.L. Perram, M.E. Mullins, Water
Environ. Res. 65 (1993) 665–673.
[52] E. Silva, M.M. Pereira, H.D. Burrows, M.E. Azenha, M. Sarakha, M. Bolte, Pho-
tochem. Photobiol. Sci. 3 (2004) 200–204.
[53] M.M. Fickling, A. Fischer, B.R. Mann, J. Packer, J. Vaughan, J. Am. Chem. Soc. 81
(1959) 42264230.
12] N. Kobayashi, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phathalocyanines—Properties
and Applications, vol. 2, VCH Publishers Inc., New York, 1993, p. 97.
13] K. Lang, J. Mosinger, D.M. Wagnerová, Coord. Chem. Rev. 248 (2004) 321–350.
14] L. Alagna, A. Capobianchi, M.P. Casaletto, G. Mattogna, A.M. Paoletti, G. Pennesi,
G. Rossi, J. Mater. Chem. 11 (2001) 1928–1935.
[
[
[15] W. Chidawanyika, A. Ogunsipe, T. Nyokong, New J. Chem. 31 (2007) 377–384.
[16] S. Moeno, T. Nyokong, J. Photochem. Photobiol. A: Chem. 203 (2009) 204–210.
[17] R. Zugle, C. Litwinski, T. Nyokong, Polyhedron 30 (2011) 1612–1619.
[18] J.G. Young, W. Onyebuagu, J. Org. Chem. 55 (1990) 2155–2159.
[19] N.B. McKeown, J. Painter, J. Mater. Chem. 4 (1994) 1153–1156.
[20] I. Scalise, E.N. Durantini, Bioorg. Med. Chem. 13 (2005) 3037–3045.
[21] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Aca-
demic Plenium Publishers, New York, 1999.
[54] R. Gerdes, D. Wohrle, W. Spiller, G. Schneider, G.G. Schnurpfeil, J. Schulz-Ekloff,
Photochem. Photobiol. A 111 (1997) 65–74.
ꢀ
[22] P. Kubat, J. Mosinger, J. Photochem. Photobiol. A 96 (1996) 93–97.
[55] A. Al-Ekabi, N. Serpone, J. Phys. Chem. 92 (1988) 5726–5731.