N.C. Castillo et al. / Journal of Photochemistry and Photobiology A: Chemistry 216 (2010) 221–227
227
[12] X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Selective synthesis and visible-
light photocatalytic activities of BiVO4 with different crystalline phases, Mater.
Chem. Phys. 103 (1) (2007) 162–167.
[13] M. Long, W. Cai, H. Kisch, Visible light induced photoelectrochemical properties
of n-BiVO4 and n-BiVO4/p-Co3O4, J. Phys. Chem. C 112 (2) (2008) 548–554.
[14] S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, R. Nakagaki, Adsorp-
tive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of
4-n-alkylphenols under visible light irradiation, Catal. Commun. 6 (3) (2005)
185–189.
[15] H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, Z. Gu, Preparation, characterization
and photocatalytic properties of Cu-loaded BiVO4, J. Hazard. Mater. 153 (1–2)
(2008) 877–884.
[16] M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degra-
dation of phenol over Co3O4/BiVO4 composite under visible light irradiation, J.
Phys. Chem. B 110 (41) (2006) 20211–20216.
species in semiconductor photocatalysis, Phys. Chem. Chem. Phys. 10 (2008)
2986–2992.
[30] T.Y. Wei, Y.Y. Wang, C.C. Wan, Photocatalytic oxidation of phenol in the
presence of hydrogen peroxide and titanium dioxide powders, J. Photochem.
Photobiol. A 55 (1990) 115–126.
[31] V. Auguliaro, E. Davi, L. Palmisano, M. Schiavello, A. Sclafani, Influence of hydro-
gen peroxide on the kinetics of phenol photodegradation in aqueous titanium
dioxide dispersion, Appl. Catal. 65 (1) (1990) 101–116.
[32] I. Ilisz, K. Föglein, A. Dombi, The photochemical behavior of hydrogen peroxide
in near UV-irradiated aqueous TiO2 suspensions, J. Mol. Catal. A: Chem. 135 (1)
(1998) 55–61.
[33] B. Jenny, P. Pichat, Determination of the actual photocatalytic rate of
hydrogen peroxide decomposition over suspended titania. fitting to the
Langmuir–Hinshelwood form, Langmuir 7 (5) (1991) 947–954.
−
[34] T. Hirakawa, Y. Nosaka, Properties of O2 and OH formed in TiO2 aqueous sus-
[17] B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Simultaneous photocatalytic reduction
of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light
irradiation, Chemosphere 63 (6) (2006) 956–963.
[18] S. Kohtani, M. Tomohiro, K. Tokumura, R. Nakagaki, Photooxidation reactions
of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocat-
alysts, Appl. Catal. B 58 (3–4) (2005) 265–272.
[19] J. Yu, Y. Zhang, A. Kudo, Synthesis and photocatalytic performances of BiVO4
by ammonia co-precipitation process, J. Solid State Chem. 182 (2) (2009) 223–
228.
[20] Y. Zhou, K. Vuille, A. Heel, B. Probst, R. Kontic, G.R. Patzke, An inorganic
hydrothermal route to photocatalytically active bismuth vanadate, Appl. Catal.
A 375 (2010) 140–148.
[21] N.C. Castillo, A. Heel, T. Graule, C. Pulgarin, Flame-assisted synthesis of
nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light pho-
tocatalytic activity, Appl. Catal. B 96 (3–4) (2010) 335–347.
[22] D. Gumy, S.A. Giraldo, J. Rengifo, C. Pulgarin, Effect of suspended TiO2 physic-
ochemical characteristics on benzene derivatives photocatalytic degradation,
Appl. Catal. B 78 (1–2) (2008) 19–29.
[23] M. Lapertot, C. Pulgarín, P. Fernández-Ibán˜ez, M.I. Maldonado, L. Pérez-Estrada,
I. Oller, W. Gernjak, S. Malato, Enhancing biodegradability of priority substances
(pesticides) by solar photo-Fenton, Water Res. 40 (5) (2006) 1086–1094.
[24] R. Enríquez, A.G. Agrios, P. Pichat, Probing multiple effects of TiO2 sintering
temperature on photocatalytic activity in water by use of a series of organic
pollutant molecules, Catal. Today 120 (2) (2007) 196–202.
[25] D.W. Bahnemann, S.N. Kholuiskaya, R. Dillert, A.I. Kulak, A.I. Kokorin, Photode-
struction of dichloroacetic acid catalyzed by nano-sized TiO2 particles, Appl.
Catal. B 36 (2) (2002) 161–169.
pensions by photocatalytic reaction and the influence of H2O2 and some ions,
Langmuir 18 (8) (2002) 3247–3254.
[35] D.D. Dionysiou, M.T. Suidan, I. Baudin, J.-M. Laîné, Effect of hydrogen perox-
ide on the destruction of organic contaminants-synergism and inhibition in a
continuous-mode photocatalytic reactor, Appl. Catal. B 50 (4) (2004) 259–269.
[36] N.C. Castillo, N. Leresche, J. Teuscher, J.-E. Moser, A. Heel, T. Graule, C. Pulgarín,
Adsorbed methylene blue on BiVO4 nanoparticles catalyzes the photocatalytic
degradation of aqueous phenol, Langmuir, in press.
[37] C.S. Zalazar, C.A. Martin, A.E. Cassano, Photocatalytic intrinsic reaction kinet-
ics. II: Effects of oxygen concentration on the kinetics of the photocatalytic
degradation of dichloroacetic acid, Chem. Eng. Sci. 60 (15) (2005) 4311–4322.
[38] D.W. Bahnemann, M. Hilgendorff, R. Memming, Charge carrier dynamics at TiO2
particles: reactivity of free and trapped holes, J. Phys. Chem. B 101 (21) (1997)
4265–4275.
[39] C.S. Zalazar, M.D. Labas, R.J. Brandi, A.E. Cassano, Dichloroacetic acid degra-
dation employing hydrogen peroxide and UV radiation, Chemosphere 66 (5)
(2007) 808–815.
[40] R. Nakamura, Y. Nakato, Primary intermediates of oxygen photoevolution
reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and pho-
toluminescence measurements, J. Am. Chem. Soc. 126 (4) (2004) 1290–1298.
[41] T. Hirakawa, K. Yawata, Y. Nosaka, Photocatalytic reactivity for O2•−and OH•
radical formation in anatase and rutile TiO2 suspension as the effect of H2O2
addition, Appl. Catal. A 325 (2007) 105–111.
[42] A. Nozik, R. Memming, Physical chemistry of semiconductor–liquid interfaces,
J. Phys. Chem. 100 (31) (1996) 13061–13078.
[43] R. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydro-
gen peroxide from photocatalytic titanium dioxide particles, J. Catal. 219 (1)
(2003) 214–218.
[44] S.M. Sethna, The Elbs persulfate oxidation, Chem. Rev. 49 (1) (1951) 91–101.
[45] G. Goor, J. Glenneberg, S. Jacobi, Ullmann’s Encyclopedia of Industrial Chem-
istry, Wiley-VCH, Weinheim, 2007 (Ch. Hydrogen peroxide, pp. 18–20).
[46] R.L. Johnson, P.G. Tratnyek, R.O. Johnson, Persulfate persistence under thermal
activation conditions, Environ. Sci. Technol. 42 (24) (2008) 9350–9356.
[47] R. Memming, Mechanism of the electrochemical reduction of persulfates and
hydrogen peroxide, J. Electrochem. Soc. 116 (6) (1969) 785–790.
[48] A. Mills, J. Wang, Photobleaching of methylene blue sensitised by TiO2: an
ambiguous system? J. Photochem. Photobiol. A 127 (1–3) (1999) 123–134.
[26] R. Enriquez, B. Beaugiraud, P. Pichat, Mechanistic implications of the effect of
TiO2 accessibility in TiO2–SiO2 coatings upon chlorinated organics photocat-
alytic removal in water, Water Sci. Technol. 49 (4) (2004) 147–152.
[27] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 90th ed., CRC Press,
Boca Raton, 2009.
[28] K.-i. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous
photocatalytic decomposition of phenol over TiO2 powder, Bull. Chem. Soc.
Jpn. 58 (7) (1985) 2015–2022.
[29] S. Kohtani, K. Yoshida, T. Maekawa, A. Iwase, A. Kudo, H. Miyabe, R. Nak-
agaki, Loading effects of silver oxides upon generation of reactive oxygen