C O M M U N I C A T I O N S
the appearance of a strongly enhanced Raman peak at 952 cm-1
(Figure 1b). This peak was assigned to the stretching vibration of
the MnV-O unit, as it shifted to 913 cm-1 with 18O substitution
(Figure 1c). The observed isotopic shift of 39 cm-1 is in close
agreement with that calculated for an isolated Mn-O diatomic
oscillator (42 cm-1). The calculated force constant for the 952 cm-1
mode is 6.61 mdyn/Å. This force constant is consistent with that
calculated for triply bonded MnVt O in MnV-oxo corrolazine (for
N-methylimidazole as the axial ligand. A 10:1 alkene/oxidant ratio
was employed in order to suppress double epoxidation. The
regioselectivity for the epoxidation was compared with results
obtained using m-CPBA as a stoichiometric oxidant (Figure 3),
where the more-substituted, electron-rich double bonds are prefer-
ably oxidized. The bulky bis-pocket (TTPPC)MnIII-PhIO system
showed a significantly higher selectivity toward the less-substituted
but more accessible double bond. It is not surprising that the bis-
pocket corrole is more sensitive than the flat corrole (TPFC)MnIII
toward steric crowdedness. The regioselectivty toward 1-methyl-
1,2,4,5-cyclohexadiene and 7,7-dimethyl-1,2,5,6-octadiene displayed
by (TTPPC)MnIII compared favorably with those reported for
encumbered Mn porphyrins.19
In conclusion, this study has presented for the first time direct
evidence of OAT between a corrole MnVt O moiety and an alkene
substrate. This is also the first RR spectroscopic identification of
Mn(V)-oxo corrole. From this work and previously demonstrated
electronic effects,12,13 it is now clear that the corrole Mn-oxo
system possesses a wide range of reactivity rivaling that of the
established porphyrin system. Further study of applications of
Mn-corrole in molecular catalysis is underway.
which νMnt ) 979 cm-1),11c indicating a triply bonded MnVt O
O
in (TTPPC)MnVO. Notably, RR-identified triply bonded MnVt O
complexes are rare.11 The observed MnVt O stretching frequency
of (TTPPC)MnVO is significantly higher than that of doubly bonded
MnVdO porphyrin species such as dioxo OdMnVdO (νMndO
741-743 cm-1),8 and (OH)MnVdO (νMndO ) 791 cm-1).18
)
At 25 °C, the half-life of (TTPPC)MnVO in CH2Cl2 is ∼7 h. In
the presence of excess amounts of styrene substrate, a significant
acceleration of the decay of (TTPPC)MnVO occurred (Figure 2),
indicating direct reaction with styrene. At the end of the reaction,
(TTPPC)MnVO returned to the (TTPPC)MnIII complex. The reaction
yielded styrene oxide, as detected by GC-MS. That OAT occurred
between (TTPPC)MnVt O and styrene was further confirmed by
the stoichiometric reaction between (TTPPC)MnVO18 and styrene,
which afforded 18O-styrene oxide (see the Supporting Information).
Acknowledgment. This work was supported by the NNSFC
(20771039) and by RGC-CERG Grants of Hong Kong (602005,
601706).
Supporting Information Available: Synthesis, selected character-
ization data, and epoxidation and RR experiments. This material is
References
(1) Armstrong, F. A. Philos. Trans. R. Soc. London, Ser. B 2008, 363, 1263.
(2) Beyer, W. F.; Fridovich, I. In Oxygen Radicals in Biology and Medicine;
Simic, M. G., Taylor, K. A., Ward, J. F., Von Sanntag, C., Eds.; Plenum:
New York, 1988; p 651.
(3) Rebelo, S. L. H.; Pereira, M. M.; Simo˜es, M. M. Q.; Neves, M. G. P. M.
S.; Cavaleiro, J. A. S. J. Catal. 2005, 234, 76.
(4) (a) Strassner, T.; Houk, K. N. Org. Lett. 1999, 1, 419. (b) Zhang, R.;
Newcomb, M. J. Am. Chem. Soc. 2003, 125, 12418.
(5) Selected examples: (a) Shirin, Z.; Hammes, B. S.; Young, V. G.; Borovik,
A. S. J. Am. Chem. Soc. 2000, 122, 1836. (b) Parsell, T. H.; Yang, M. Y.;
Borovik, A. S. J. Am. Chem. Soc. 2009, 131, 2762. (c) Yin, G. C.;
Buchalova, M.; Danby, A. M.; Perkins, C. M.; Kitko, D.; Carter, J. D.;
Scheper, W. M.; Busch, D. H. J. Am. Chem. Soc. 2005, 127, 17170. (d)
Zhang, R.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2005, 127,
6573. (e) Jin, N.; Groves, J. T. J. Am. Chem. Soc. 1999, 121, 2923.
(6) Zhang, R.; Newcomb, M. Acc. Chem. Res. 2008, 41, 468.
(7) Song, W. J.; Seo, M. S.; DeBeer George, S.; Ohta, T.; Song, R.; Kang,
M. J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. J. Am. Chem.
Soc. 2007, 129, 1268.
Figure 2. UV-vis spectral changes of (TTPPC)MnVO in the presence of
excess styrene in CH2Cl2 (scan interval ) 20 min). Inset: absorbance decay
of (TTPPC)MnVO monitored at λ ) 366 nm; the pseudo-first-order rate
constant is 3.8 × 10-4 s-1 (25 ( 0.1 °C).
(8) (a) Jin, N.; Ibrahim, M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc.
2007, 129, 12416. (b) Gross, Z. Angew. Chem., Int. Ed. 2008, 47, 2737.
(9) Gilbert, B. C.; Smith, J. R. L.; Payeras, A. M. I.; Oakes, J. Org. Biomol.
Chem. 2004, 8, 1176.
(10) Khenkin, A. M.; Kumar, D.; Shaik, S.; Neumann, R. J. Am. Chem. Soc.
2006, 128, 15451.
(11) (a) Workman, J. M.; Powell, R. D.; Procyk, A. D.; Collins, T. J.; Bosian,
D. F. Inorg. Chem. 1992, 31, 1548. (b) Collins, T. J.; Powell, R. D.;
Slebodnick, C.; Uffelman, E. S. J. Am. Chem. Soc. 1990, 112, 899. (c)
Mandimutsira, B. S.; Ramdhanie, B.; Todd, R. C.; Wang, H.; Zareba, A. A.;
Czernuszewicz, R. S.; Goldberg, D. P. J. Am. Chem. Soc. 2002, 124, 15170.
(12) (a) Gross, Z.; Golubkov, G.; Simkhovich, L. Angew. Chem., Int. Ed. 2000,
39, 4045. (b) Golubkov, G.; Bendix, J.; Gray, H. B.; Mahammed, A.;
Goldberg, I.; DiBilio, A. J.; Gross, Z. Angew. Chem., Int. Ed. 2001, 40,
2132.
(13) Liu, H.-Y.; Lai, T.-S.; Yeung, L.-L.; Chang, C. K. Org. Lett. 2003, 5, 617.
(14) Liu, H.-Y.; Zhou, H.; Liu, L.-Y.; Ying, X.; Jiang, H.-F.; Chang, C. K.
Chem. Lett. 2007, 36, 274.
(15) Gryko, D. T. J. Porphyrins Phthalocyanines 2008, 12, 906.
(16) Suslick, K. S.; Fox, M. M. J. Am. Chem. Soc. 1983, 105, 3507.
(17) Schardt, B. C.; Hill, G. L. Inorg. Chem. 1983, 22, 1563.
(18) Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B.-H.; Tani, F.; Naruta, Y.
Angew. Chem., Int. Ed. 2004, 43, 98.
(19) (a) Lai, T.-S.; Lee, S. K. S.; Yeung, L.-L.; Liu, H.-Y.; Williams, I. D.;
Chang, C.-K. Chem. Commun. 2003, 620. (b) Chang, C. K.; Yeh, C.-Y.;
Lai, T.-S. Macromol. Symp. 2000, 156, 117. (c) Suslick, K. S.; Cook, B. R.
J. Chem. Soc., Chem. Commun. 1987, 200.
Figure 3. Percentage of less-substituted epoxides (formed at the darkened
CdC bonds) produced by epoxidation of dienes using m-CPBA (magenta),
PhIO-(TPFC)MnIII (red), and PhIO-(TTPPC)MnIII (blue).
Shape-selective catalytic epoxidation of nonconjugated dienes
using (TTPPC)MnIII/PhIO was also examined in the presence of
JA905153R
9
J. AM. CHEM. SOC. VOL. 131, NO. 36, 2009 12891