ChemComm
Communication
Table 2 Results for the hydrogenation of different biomass derived of 1,4-pentanediol over the Rh–MoO
/SiO
catalyst. From the
x
2
carboxylic acids over the 4%Rh–MoO
x 2
/SiO (Mo/Rh = 0.13). Reaction
reactions of some model compounds, it was found that the
modification of Mo promoted the hydrogenation of the carboxyl
group over the Rh/SiO catalyst, which was responsible for the
conditions: 353 K, 6 MPa, 2.0 g catalyst, 10% carboxylic acid aqueous
À1
À1
solutions flow rate 0.08 mL min , H
2
flow rate 60 mL min
2
Reactant
Conversion (%)
100
Product
Selectivity (%) higher selectivity of 1,4-pentanediol over the Rh–MoO /SiO2
x
catalyst.
This work was supported by the Natural Science Foundation
Propanoic acid
Propanol
76.2
a
Others
23.8
68.4
31.6
58.8
14.2
27.0
46.1
13.9
40.0
42.0
17.4
40.6
Butanoic acid
Lactic acid
100
Butanol
a
of China (No. 21106143; No. 21277140), 100-talent project of
Dalian Institute of Chemical Physics (DICP) Zhejiang Provincial
Natural Science Foundation of China (LR12E02001), and the
Independent Innovation Foundation of State Key Laboratory of
Catalysis (No. R201113) of DICP.
Others
76.9
1,2-Propanediol
1
-Propanol
a
Others
Malonic acid
96.2
99.0
1,3-Propanediol
1
-Propanol
a
Others
b
Succinic acid
1,4-Butanediol
Notes and references
1
-Butanol
a
Others
1
G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106,
a
Others means light alkanes and some unidentified products (see
4044–4098.
b
Table S2 of ESI). 5% aqueous solution of succinic acid was used as
feedstock.
2 D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green Chem., 2010, 12,
1493–1513.
3
4
5
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411–2502.
P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538–1558.
H. Olcay, L. Xu, Y. Xu and G. W. Huber, ChemCatChem, 2010, 2,
Rh–MoO
x 2
/SiO to 1,4-pentanediol. Analogous to what the Tomoshige
1
420–1424.
group found in their recent work about the selective hydrogenolysis
of tetrahydrofurfuryl alcohol,
6
7
8
L. Chen, Y. Zhu, H. Zheng, C. Zhang and Y. Li, Appl. Catal., A, 2012,
411–412, 95–104.
A. Primo, P. Concepcion and A. Corma, Chem. Commun., 2011, 47,
23,24
the modification of Rh catalysts
with Mo may promote the adsorption of carboxyl acid (by interaction
with the lone electron pair of hydroxyl and/or carbonyl group
oxygen), which is very important for the hydrogenation of carboxylic
3613–3615.
D. P. Minh, M. Besson, C. Pinel, P. Fuertes and C. Petitjean, Top.
Catal., 2010, 53, 1270–1273.
11
9 B. K. Ly, D. P. Minh, C. Pinel, M. Besson, B. Tapin, F. Epron and
C. Especel, Top. Catal., 2012, 55, 466–473.
acid.
Subsequently, we also explored the possibility of using the
Rh–MoO /SiO catalyst for the aqueous phase hydrogenation of
1
1
1
0 R. Luque, J. H. Clark, K. Yoshida and P. L. Gai, Chem. Commun.,
2009, 5305–5307.
1 H. G. Manyar, C. Paun, R. Pilus, D. W. Rooney, J. M. Thompson and
C. Hardacre, Chem. Commun., 2010, 46, 6279–6281.
2 Y. Takeda, Y. Nakagawa and K. Tomishige, Catal. Sci. Technol., 2012,
2, 2221–2223.
x
2
other biomass derived carboxylic acids. Under the same reaction
conditions that we used for the hydrogenation of levulinic acid,
high conversion and good selectivity were achieved for the
aqueous phase hydrogenation of different organic acids to their
corresponding alcohols or diols (Table 2). To our knowledge, this
1
1
3 D. C. Elliott, Energy Fuels, 2007, 21, 1792–1815.
4 S. G. Wettstein, D. M. Alonso, Y. X. Chong and J. A. Dumesic, Energy
Environ. Sci., 2012, 5, 8199–8203.
is the first report about the aqueous hydrogenation of carboxylic 15 E. I. Gurbuz, S. G. Wettstein and J. A. Dumesic, ChemSusChem, 2012,
5
, 383–387.
6 D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Green Chem., 2013,
5, 584–595.
acid at such a low temperature (353 K). In our future work, the
optimization of the catalyst and reaction conditions will be
carried out to obtain a higher yield of alcohol or diol.
1
1
17 S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye
and J. A. Dumesic, Appl. Catal., B, 2012, 117, 321–329.
8 J. Q. Bond, D. M. Alonso, D. Wang, R. M. West and J. A. Dumesic,
x 2
Finally, we studied the stability of 4%Rh–MoO /SiO (Mo/Rh =
1
0.13) catalyst in aqueous phase hydrogenation of acetic acid and
Science, 2010, 327, 1110–1114.
levulinic acid (see Fig. S1 and Table S3 in ESI†). During the 30 h 19 F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt,
J. Klankermayer and W. Leitner, Angew. Chem., Int. Ed., 2010, 49,
continuous test, no evident change of activity and/or selectivity
5510–5514.
was observed. Based on the excellent performance and good
stability of Rh–MoO /SiO , we believe that it is a promising
catalyst for future applications.
x 2
Mo modified Rh/SiO (Rh–MoO /SiO ) is a promising catalyst
2
2
2
2
2
0 H. Mehdi, V. F ´a bos, R. Tuba, A. Bodor, L. Mika and I. Horv ´a th, Top.
Catal., 2008, 48, 49–54.
1 F. M. A. Geilen, B. Engendahl, M. H ¨o lscher, J. Klankermayer and
W. Leitner, J. Am. Chem. Soc., 2011, 133, 14349–14358.
2 X.-L. Du, Q.-Y. Bi, Y.-M. Liu, Y. Cao, H.-Y. He and K.-N. Fan, Green
Chem., 2012, 14, 935–939.
3 S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka and
K. Tomishige, J. Catal., 2009, 267, 89–92.
4 S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa and K. Tomishige,
Appl. Catal., B, 2012, 111–112, 27–37.
x
2
2
for the low-temperature aqueous phase selective hydrogenation
of levulinic acid to 1,4-pentanediol (a potential monomer for
the synthesis of polyester). The synergism between the closely
contacted Rh and Mo species is necessary for the high selectivity
1
416 | Chem. Commun., 2014, 50, 1414--1416
This journal is ©The Royal Society of Chemistry 2014