Biochemistry
Article
(18) Kumar, D., Arun, V., Maruthi Kumar, N., Acosta, G., Noel, B.,
and Shah, K. (2012) A facile synthesis of novel bis-(indolyl)-1,3,4-
oxadiazoles as potent cytotoxic agents. ChemMedChem 7, 1915−1920.
(19) Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim,
R., and Dimoglo, A. (2006) Synthesis and characterization of novel
hydrazide-hydrazones and the study of their structure-antituberculosis
activity. Eur. J. Med. Chem. 41, 1253−1261.
(20) Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S., and Stables, J.
(2003) Synthesis and biological activities of diflunisal hydrazide-
hydrazones. Eur. J. Med. Chem. 38, 1005−1013.
(21) Vicini, P., Incerti, M., Doytchinova, I. A., La Colla, P., Busonera,
B., and Loddo, R. (2006) Synthesis and antiproliferative activity of
benzo[d]isothiazole hydrazones. Eur. J. Med. Chem. 41, 624−632.
(22) Tantak, M. P., Kumar, A., Noel, B., Shah, K., and Kumar, D.
(2013) Synthesis and biological evaluation of 2-arylamino-5- (3′-
indolyl)-1,3,4-oxadiazoles as potent cytotoxic agents. ChemMedChem
8, 1468−1474.
(23) James, P. N., and Snyder, H. (1959) Indole-3-aldehyde. Org.
Synth. 39, 30.
(24) Hansen, C. H., and Brunner, N (1994) Cell Biology, Part I, pp
(37) Lakowicz, J. R. (1999) Instrumentation for Fluorescence
Spectroscopy. In Principles of Fluorescence Spectroscopy, 2nd ed., pp
55−57, Kluwer Academic/Plenum Publishers, New York.
(38) Bhattacharyya, B., Kapoor, S., and Panda, D. (2010)
Fluorescence spectroscopic methods to analyze drug-tubulin inter-
actions. Methods Cell Biol. 95, 301−329.
(39) Mas, M. T., and Colman, R. F. (1985) Spectroscopic studies of
the interactions of coenzymes and coenzyme fragments with pig heart,
oxidized triphosphopyridine nucleotide specific isocitrate dehydrogen-
ase. Biochemistry 24, 1634−1646.
(40) Dixon, M. (1953) The determination of enzyme inhibitor
constants. Biochem. J. 55, 170−171.
(41) Lowe, J., Li, H., Downing, K. H., and Nogales, E. (2001)
Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol.
313, 1045−1057.
(42) Ravelli, R. B., Gigant, B., Curmi, P. A., Jourdain, I., Lachkar, S.,
Sobel, A., and Knossow, M. (2004) Insight into tubulin regulation
from a complex with colchicine and a stathmin-like domain. Nature
428, 198−202.
(43) Green, D. R., and Kroemer, G. (2004) The pathophysiology of
mitochondrial cell death. Science 305, 626−629.
(44) Ly, J. D., Grubb, D. R., and Lawen, A. (2003) The
mitochondrial membrane potential (deltapsi(m)) in apoptosis; an
update. Apoptosis 8, 115−128.
(45) Mollinedo, F., and Gajate, C. (2003) Microtubules, microtubule-
interfering agents and apoptosis. Apoptosis 8, 413−450.
(46) Dumontet, C., and Jordan, M. A. (2010) Microtubule-binding
agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discovery
9, 790−803.
(47) Cortese, F., Bhattacharyya, B., and Wolff, J. (1977)
Podophyllotoxin as a probe for the colchicine binding site of tubulin.
J. Biol. Chem. 252, 1134−1140.
(48) Esteve, M. A., Carre, M., and Braguer, D. (2007) Microtubules
in apoptosis induction: are they necessary? Curr. Cancer Drug Targets
7, 713−729.
(49) Leterrier, J. F., Rusakov, D. A., Nelson, B. D., and Linden, M.
(1994) Interactions between brain mitochondria and cytoskeleton:
evidence for specialized outer membrane domains involved in the
association of cytoskeleton-associated proteins to mitochondria in situ
and in vitro. Microsc. Res. Tech. 27, 233−261.
(50) Wang, L. G., Liu, X. M., Kreis, W., and Budman, D. R. (1999)
The effect of antimicrotubule agents on signal transduction pathways
of apoptosis: a review. Cancer Chemother. Pharmacol. 44, 355−361.
(51) Yamaguchi, H., Chen, J., Bhalla, K., and Wang, H. G. (2004)
Regulation of Bax activation and apoptotic response to microtubule-
damaging agents by p53 transcription-dependent and -independent
pathways. J. Biol. Chem. 279, 39431−39437.
(52) Andre, N., Carre, M., Brasseur, G., Pourroy, B., Kovacic, H.,
Briand, C., and Braguer, D. (2002) Paclitaxel targets mitochondria
upstream of caspase activation in intact human neuroblastoma cells.
FEBS Lett. 532, 256−260.
(53) Haldar, S., Basu, A., and Croce, C. M. (1997) Bcl2 is the
guardian of microtubule integrity. Cancer Res. 57, 229−233.
(54) Jordan, M. A., Thrower, D., and Wilson, L. (1992) Effects of
vinblastine, podophyllotoxin and nocodazole on mitotic spindles.
Implications for the role of microtubule dynamics in mitosis. J. Cell Sci.
102 (Part 3), 401−416.
(55) Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema,
R., and Kroemer, G. (2004) Cell death by mitotic catastrophe: a
molecular definition. Oncogene 23, 2825−2837.
(56) Bhattacharyya, B., and Wolff, J. (1984) Immobilization-
dependent fluorescence of colchicine. J. Biol. Chem. 259, 11836−
11843.
(57) Andreu, J. M., and Timasheff, S. N. (1982) Conformational
states of tubulin liganded to colchicine, tropolone methyl ether, and
podophyllotoxin. Biochemistry 21, 6465−6476.
(58) Garland, D. L. (1978) Kinetics and mechanism of colchicine
binding to tubulin: evidence for ligand-induced conformational
change. Biochemistry 17, 4266−4272.
16−18, Academic Press, New York.
(25) Sengupta, S., Smitha, S. L., Thomas, N. E., Santhoshkumar, T.
R., Devi, S. K., Sreejalekshmi, K. G., and Rajasekharan, K. N. (2005) 4-
Amino-5-benzoyl-2-(4- methoxyphenylamino)thiazole (DAT1): a
cytotoxic agent towards cancer cells and a probe for tubulin-
microtubule system. Br. J. Pharmacol. 145, 1076−1083.
(26) Sladowski, D., Steer, S. J., Clothier, R. H., and Balls, M. (1993)
An improved MTT assay. J. Immunol. Methods 157, 203−207.
(27) Das, A., Chakrabarty, S., Choudhury, D., and Chakrabarti, G.
(2010) 1,4-Benzoquinone (PBQ) induced toxicity in lung epithelial
cells is mediated by the disruption of the microtubule network and
activation of caspase-3. Chem. Res. Toxicol. 23, 1054−1066.
(28) Vermes, I., Haanen, C., Steffens-Nakken, H., and
Reutellingsperger, C. (1995) A novel assay for apoptosis. Flow
cytometric detection of phosphatidylserine expression on early
apoptotic cells using fluorescein labelled Annexin V. J. Immunol.
Methods 184, 39−51.
(29) Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A.
(1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable
fluorescent probe to assess delta psi changes in intact cells:
implications for studies on mitochondrial functionality during
apoptosis. FEBS Lett. 411, 77−82.
(30) Xie, C. M., Chan, W. Y., Yu, S., Zhao, J., and Cheng, C. H.
(2011) Bufalin induces autophagy-mediated cell death in human colon
cancer cells through reactive oxygen species generation and JNK
activation. Free Radical Biol. Med. 51, 1365−1375.
(31) Minotti, A. M., Barlow, S. B., and Cabral, F. (1991) Resistance
to antimitotic drugs in Chinese hamster ovary cells correlates with
changes in the level of polymerized tubulin. J. Biol. Chem. 266, 3987−
3994.
(32) Bradford, M. M. (1976) A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle
of protein-dye binding. Anal. Biochem. 72, 248−254.
(33) Acharya, B. R., Bhattacharyya, B., and Chakrabarti, G. (2008)
The natural naphthoquinone plumbagin exhibits antiproliferative
activity and disrupts the microtubule network through tubulin binding.
Biochemistry 47, 7838−7845.
(34) Sloboda, R. D., and Rosenbaum, J. L. (1982) Purification and
assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85
(Part B), 409−416.
(35) Hamel, E., del Campo, A. A., Lowe, M. C., and Lin, C. M.
(1981) Interactions of taxol, microtubule-associated proteins, and
guanine nucleotides in tubulin polymerization. J. Biol. Chem. 256,
11887−11894.
(36) Gaskin, F., Cantor, C. R., and Shelanski, M. L. (1974)
Turbidimetric studies of the in vitro assembly and disassembly of
porcine neurotubules. J. Mol. Biol. 89, 737−755.
3034
Biochemistry 2016, 55, 3020−3035