Job/Unit: O50422
/KAP1
Date: 07-05-15 12:33:01
Pages: 6
C. Tan, H. Xiang, Q. He, C. Yang
SHORT COMMUNICATION
and the crude product was eluted on silica gel with petroleum ether/
ethyl acetate (10:1 to 2:1, v/v) to give target compounds 4.
β-oxo ester affected the reaction yields significantly. Com-
pared to substituents at other positions, ortho substituents
provided lower yields due to steric hindrance (4c vs. 4a–b,
4h vs. 4f–g and 4m vs. 4k–l), whereas substrates with the
bulkier ortho-substituted trifluoromethyl group failed to
give the corresponding products (4q vs. 4o–p). Heterocyclic
β-oxo esters such as thiophene- and furan-substituted sub-
Acknowledgments
This work was financially supported by the Chinese Academy of
Sciences (“Interdisciplinary Cooperation Team” Program for Sci-
strates also gave moderate yields under the reaction condi- ence and Technology Innovation), the National Natural Science
Foundation of China (grant numbers 81321092, and 21072205),
and the State Key Laboratory of Drug Research/Shanghai Institute
of Materia Medica (SKLDR/SIMM) (SIMM1403ZZ-01).
tions (4r–s). Notably, cyclic β-oxo esters were found to be
suitable substrates as well, providing fused polycyclic pyr-
rolo[1,2-b]pyridazin-4(1H)-ones 4t–v in acceptable yields.
Further studies illustrated that compounds 1 with ester,
electron-donating pentyl, and electron-withdrawing chloro [1] J. J. Duan, Z. Lu, B. Jiang, B. V. Yang, L. M. Doweyko, D. S.
Nirschl, L. E. Haque, S. Lin, G. Brown, J. Hynes Jr., J. S. Tok-
arski, J. S. Sack, J. Khan, J. S. Lippy, R. F. Zhang, S. Pitt, G.
Shen, W. J. Pitts, P. H. Carter, J. C. Barrish, S. G. Nadler, L. M.
Salter-Cid, M. McKinnon, A. Fura, G. L. Schieven, S. T. Wro-
bleski, Bioorg. Med. Chem. Lett. 2014, 24, 5721.
groups are also compatible with the reaction process (4w–
y). For the synthesis of product 4y, the chloro group of the
substrate was also
a sterically encumbering group.
Additionally, the structure of 4d was further confirmed by
[2] P. C. Tang, J. Feng, L. Huang, Z. Xu, L. Cheng, X. Zhang, L.
Zhang, B. Hu, Bioorg. Med. Chem. Lett. 2009, 19, 6437.
[3] B. M. Fox, K. Iio, K. Li, R. Choi, T. Inaba, S. Jackson, S.
Sagawa, B. Shan, M. Tanaka, A. Yoshida, F. Kayser, Bioorg.
Med. Chem. Lett. 2010, 20, 6030.
X-ray crystallographic analysis (Figure 1).
[4] Z. Chen, S. H. Kim, S. A. Barbosa, T. Huynh, D. R. Tortolani,
K. J. Leavitt, D. D. Wei, V. Manne, C. S. Ricca, J. Gullo-Brown,
M. A. Poss, W. Vaccaro, M. E. Salvati, Bioorg. Med. Chem.
Lett. 2006, 16, 628.
[5] I. Dorange, R. Forsblom, I. Macsari, M. Svensson, J. Bylund,
Y. Besidski, J. Blid, D. Sohn, Y. Gravenfors, Bioorg. Med.
Chem. Lett. 2012, 22, 6888.
[6] T. Saito, T. Obitsu, H. Kohno, I. Sugimoto, T. Matsushita, T.
Nishiyama, T. Hirota, H. Takeda, N. Matsumura, S. Ueno, A.
Kishi, Y. Kagamiishi, H. Nakai, Y. Takaoka, Bioorg. Med.
Chem. 2012, 20, 1122.
[7] a) K. M. K. Swamy, M. S. Park, S. J. Han, S. K. Kim, J. H.
Kim, C. Lee, H. Bang, Y. Kim, S.-J. Kim, J. Yoon, Tetrahedron
2005, 61, 10227; b) I. I. Mangalagiu, G. N. Zbancioc, Synlett
2006, 0804; c) R. R. Sagyam, R. Buchikonda, J. P. Pitta, H.
Vurimidi, P. R. Padi, M. R. Ghanta, Beilstein J. Org. Chem.
2009, 5, 66; d) G. Zbancioc, I. I. Mangalagiu, Tetrahedron
2010, 66, 278; e) T. Mitsumori, I. M. Craig, I. B. Martini, B. J.
Schwartz, F. Wudl, Macromolecules 2005, 38, 4698; f) Y.
Cheng, B. Ma, F. Wudl, J. Mater. Chem. 1999, 9, 2183.
[8] a) W. Flitch, U. Krämer, Tetrahedron Lett. 1968, 9, 1479; b)
D. E. Kuhla, J. O. Lombardino, Adv. Heterocycl. Chem. 1977,
21, 1.
Figure 1. X-ray crystal structure of 4d.[17]
Conclusions
[9] a) F. M. Abdelrazek, Synth. Commun. 2005, 35, 2251; b) F. M.
Abdelrazek, S. A. Ghozlan, F. A. Michael, J. Heterocycl.
Chem. 2007, 44, 63.
We have developed the first copper(II)-catalyzed tandem
synthesis of 2-substituted pyrrolo[1,2-b]pyridazin-4(1H)-
ones by a Conrad–Limpach-type reaction. Compared to the
traditional Conrad–Limpach quinoline synthesis, this reac-
tion is the first example to apply Lewis acidic copper salts,
which was further used to construct pyrrolo[1,2-b]pyrid-
azin-4(1H)-ones. Moreover, the desired pyrrolo[1,2-b]pyrid-
azin-4(1H)-ones could be converted into diverse pyr-
rolo[1,2-b]pyridazines for drug discovery and materials
science.
[10] K. Satoh, T. Miyasaka, K. Arakawa, Yakugaku Zasshi 1977,
97, 422.
[11] T. Mitsumori, M. Bendikov, J. Sedó, F. Wudl, Chem. Mater.
2003, 15, 3759.
[12] M. Caira, F. Dumitras¸cu, B. Draghici, M. Caproiu, D. Dumi-
˘
˘
trescu, Synlett 2008, 813.
[13] T.-S. Kim, E. Lee, D. Kim, B.-M. Park, J. Park, J. Joo, PCT
Int. Appl. WO2010044543-A2, 2010.
[14] a) J. Chen, B. Liu, Y. Chen, Q. He, C. Yang, RSC Adv. 2014,
4, 11168; b) H. Xiang, Y. Chen, Q. He, Y. Xie, C. Yang, RSC
Adv. 2013, 3, 5807; c) Y. Chen, H. Xiang, C. Tan, Y. Xie, C.
Yang, Tetrahedron 2013, 69, 2714.
[15] M. Wang, C. Tan, Q. He, Y. Xie, C. Yang, Org. Biomol. Chem.
2013, 11, 2574.
[16] a) J.-C. Brouet, S. Gu, N. P. Peet, J. D. Williams, Synth. Com-
mun. 2009, 39, 1563; b) J. Greeff, J. Joubert, S. F. Malan, S.
van Dyk, Bioorg. Med. Chem. 2012, 20, 809; c) S. C. Kuo, H. Z.
Lee, J. P. Juang, Y. T. Lin, T. S. Wu, J. J. Chang, D. Lednicer,
K. D. Paull, C. M. Lin, J. Med. Chem. 1993, 36, 1146; d) C.
Experimental Section
General Procedure for Compounds 4: To a mixture of N-aminopyr-
roles 1 (0.5 mmol) and β-aryl-β-oxo esters 2 (0.6 mmol) in dry
1,1,2,2-tetrachloroethane (10.0 mL) was added Cu(OTf)2
(0.1 mmol). Then the mixture was stirred vigorously at 140 °C.
When the reaction was complete, the solvent was removed in vacuo,
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0