ACS Catalysis
Page 6 of 13
(11) Bai, Y.; Chen, J.; Zimmerman, S. C. Designed Transition
Metal Catalysts for Intracellular Organic Synthesis. Chem. Soc. Rev.
2018, 47, 1811–1821.
(12) Miguel-Ávila, J.; Tomás-Gamasa, M.; Olmos, A.; Pérez, P.
J.; Mascareñas, J. L. Discrete Cu(I) Complexes for Azide–alkyne
Annulations of Small Molecules inside Mammalian Cells. Chem. Sci.
2018, 9, 1947–1952.
(13) Vinogradova, E. V. Organometallic Chemical Biology: An
Organometallic Approach to Bioconjugation. Pure and Applied
Chemistry. 2017, 1619–1640.
The manuscript was written through contributions of all au-
thors. / All authors have given approval to the final version of
the manuscript. / ‡These authors contributed equally. (match
statement to author names with a symbol)
1
2
3
4
5
6
7
Supporting Information. The Supporting Information is
available free of charge on the ACS Publications website
mental procedures, and cell studies.
8
9
(14) Streu, C.; Meggers, E. Ruthenium-Induced Allylcarba-
mate Cleavage in Living Cells. Angew. Chem. Int. Ed. 2006, 45,
5645–5648.
(15) Sasmal, P. K.; Carregal-Romero, S.; Parak, W. J.; Meggers,
E. Light-Triggered Ruthenium-Catalyzed Allylcarbamate Cleavage
in Biological Environments. Organometallics 2012, 31, 5968–
5970.
(16) Sánchez, M. I.; Penas, C.; Vázquez, M. E.; Mascareñas, J. L.
Metal-Catalyzed Uncaging of DNA-Binding Agents in Living Cells.
Chem. Sci. 2014, 5, 1901–1907.
(17) Tomás-Gamasa, M.; Martínez-Calvo, M.; Couceiro, J. R. J.
R.; Mascarenãs, J. L.; Mascareñas, J. L. Transition Metal Catalysis in
the Mitochondria of Living Cells. Nat. Commun. 2016, 7, 12538.
(18) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-
Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew.
Chem. Int. Ed. 2005, 44, 4442–4489.
(19) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladi-
um(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions:
Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–
5115.
(20) Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M.;
Sanchez-Martin, R. M.; Bradley, M. Palladium-Mediated Intracellu-
lar Chemistry. Nat. Chem. 2011, 3, 239–243.
(21) Weiss, J. T.; Dawson, J. C., Macleod, K. G.; Rybski, W.; Fra-
ser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N.
O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkyla-
tion of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated
prodrug approach. Nat. Commun. 2014, 5, 3277.
(22) Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.;
Chen, P. R. Chemical Remodeling of Cell-Surface Sialic Acids
through a Palladium-Triggered Bioorthogonal Elimination Reac-
tion. Angew. Chem. Int. Ed. 2015, 54, 5364–5368.
(23) Li, J.; Yu, J.; Zhao, J.; Wang, J.; Zheng, S.; Lin, S.; Chen, L.;
Yang, M.; Jia, S.; Zhang, X; Chen P. R. Palladium-Triggered Depro-
tection Chemistry for Protein Activation in Living Cells. Nat. Chem.
2014, 6, 352–361.
(24) Miller, M. A.; Askevold, B.; Mikula, H.; Kohler, R. H.; Piro-
vich, D.; Weissleder, R. Nano-Palladium Is a Cellular Catalyst for in
Vivo Chemistry. Nat. Commun. 2017, 8, 15906.
(25) Wang, J.; Zheng, S.; Liu, Y.; Zhang, Z.; Lin, Z.; Li, J.; Zhang,
G.; Wang, X.; Li, J.; Chen, P. R. Palladium-Triggered Chemical Res-
cue of Intracellular Proteins via Genetically Encoded Allene-Caged
Tyrosine. J. Am. Chem. Soc. 2016, 138, 15118–15121.
(26) Ramirez, E.; Jansat, S.; Philippot, K.; Lecante, P.; Gomez,
M.; Masdeu-Bultó, A. M.; Chaudret, B. Influence of Organic Ligands
on the Stabilization of Palladium Nanoparticles. J. Organomet.
Chem. 2004, 689 (24 SPEC. ISS.), 4601–4610.
(27) Gao, T.; Xu, P.; Liu, M.; Bi, A.; Hu, P.; Ye, B.; Wang, W.;
Zeng, W. A Water-Soluble Esipt Fluorescent Probe with High
Quantum Yield and Red Emission for Ratiometric Detection of
Inorganic and Organic Palladium. Chem. Asian J. 2015, 10, 1142–
1145.
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We are thankful for the financial support from the Xunta de
Galicia (Centro Singular de Investigación de Galicia
Acreditación 2016–2019, ED431G/09) and the European
Union (European Regional Development Fund – ERDF). We
also thank support given by the Spanish grant SAF2016-
76689-R, the Xunta de Galicia (grants 2015-CP082, ED431C
2017/19), and the European Research Council (Advanced
Grant No. 340055). MMC thanks the Ministerio de Economía y
Competitividad for the Postdoctoral fellowship (IJCI-2014-
19326). JR and JM thank to Xunta de Galicia and Ministerio of
Educacion for predoctoral fellowships, respectively. The au-
thors thank R. Menaya-Vargas for technical assistance.
REFERENCES
(1)
Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G. L.;
Thornton, J. M. Metal Ions in Biological Catalysis: From Enzyme
Databases to General Principles. J. Biol. Inorg. Chem. 2008, 13,
1205–1218.
(2)
Pàmies, O.; Diéguez, M.; Bäckvall, J. E. Artificial Metal-
loenzymes in Asymmetric Catalysis: Key Developments and Fu-
ture Directions. Adv. Synth. Catal. 2015, 357, 1567–1586.
(3)
Sadhu, K. K.; Lindberg, E.; Winssinger, N. In Cellulo Pro-
tein Labelling with Ru-Conjugate for Luminescence Imaging and
Bioorthogonal Photocatalysis. Chem. Commun. 2015, 51, 16664–
16666.
(4)
Bos, J.; Browne, W. R.; Driessen, A. J. M.; Roelfes, G. Su-
pramolecular Assembly of Artificial Metalloenzymes Based on the
Dimeric Protein LmrR as Promiscuous Scaffold. J. Am. Chem. Soc.
2015, 137, 9796–9799.
(5)
Dydio, P.; Key, H. M.; Nazarenko, A.; Rha, J. Y.-E.;
Seyedkazemi, V.; Clark, D. S.; Hartwig, J. F. An Artificial Metalloen-
zyme with the Kinetics of Native Enzymes. Science 2016, 354,
102–106.
(6)
Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Abiologi-
cal Catalysis by Artificial Haem Proteins Containing Noble Metals
in Place of Iron. Nature 2016, 534, 534–537.
(7)
Jeschek, M.; Reuter, R.; Heinisch, T.; Trindler, C.; Klehr,
J.; Panke, S.; Ward, T. R. Directed Evolution of Artificial Metalloen-
zymes for in Vivo Metathesis. Nature 2016, 537, 661–665.
(8)
Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni,
M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R.
Artificial Metalloenzymes: Reaction Scope and Optimization
Strategies. Chem. Rev. 2018, 118, 142–231.
(9)
Martínez-Calvo, M.; Mascareñas, J. L. Organometallic Ca-
talysis in Biological Media and Living Settings. Coord. Chem. Rev.
2018, 359, 57–79.
(10) Rebelein, J. G.; Ward, T. R. In Vivo Catalyzed New-to-
Nature Reactions. Curr. Opin. Biotechnol. 2018, 53, 106–114.
ACS Paragon Plus Environment