Communication
does not permit an enolate approach free from a steric clash
with the ligand backbone (not shown). Rotation of the sub-
strate aryl group becomes degenerate when it is 2,6-disubsti-
tuted, leading to very high ee values for such substrates.
ee). We demonstrated that this reaction was reproducible on
a 4.0 mmol scale without any deterioration of enantioselectivi-
ty. Finally, we illustrated the application of this asymmetric
methodology as the key enantioselective step in the asymmet-
ric formal synthesis of the natural product (+)-tanikolide. We
are currently exploiting the DAAA of a range of other a-aryl-
containing substrates and the reports of these investigations
will be the subject of future reports from these laboratories.
With a highly enantioselective synthesis of a-allyl- a-aryl cy-
clopentanones at hand, we carried out a concise asymmetric
formal synthesis of (+)-tanikolide from 1b (Scheme 3). Taniko-
lide is a brine shrimp toxin and antifungal marine natural prod-
uct isolated from blue green algae cyanobacterium Lyngbya
Acknowledgements
R.A. acknowledges post-doctoral funding from the Synthesis
and Solid State Pharmaceutical Centre (SSPC) under grant no.
12\RC\2275. R.D. is grateful for the award of an Irish Research
Council (IRC) EMBARK Initiative PhD Scholarship. We acknowl-
edge facilities provided by the Centre for Synthesis and Chemi-
cal Biology (CSCB), funded by the Higher Education Authority’s
PRTLI. We would like to thank Dr. Helge Mꢁller-Bunz for X-ray
crystal structure analysis and Dr. Yannick Ortin for help with
the NMR spectroscopic studies. We thank one of the manu-
script reviewers for key insights and suggestions on the model
to rationalise the asymmetric induction observed.
Keywords: allylic alkylation
·
asymmetric catalysis
·
decarboxylation · natural products · palladium
[1] J. ꢂhman, J. P. Wolfe, M. V. Troutman, M. Palucki, S. L. Buchwald, J. Am.
Chem. Soc. 1998, 120, 1918–1919.
Scheme 3. Concise formal asymmetric synthesis of (+)-tanikolide. i) Hovey-
da–Grubbs II (5.0 mol%), 1-decene (3.0 equiv), CH2Cl2, reflux, 24 h, 78%.
ii) Pd/C, H2 (1 atm), EtOAc, RT, 18 h, quant. iii) LiAlH4 (1m in Et2O, 1.0 equiv),
Et2O, reflux, 3 h, 88%. iv) Ac2O (1.2 equiv), Et3N (1.2 equiv), DMAP (0.2 equiv),
CH2Cl2, RT, 92%. v) NaIO4 (15 equiv), RuCl3 (0.1 equiv), CCl4, MeCN and H2O
(1:1:1.5, VVÀ1), RT, 36 h. vi) LiAlH4 (1m in Et2O, 0.5 equiv), Et2O, reflux, 3 h vii)
NaOCl (13 wt%), AcOH, 108C, 30 min, 50% over three steps.
[2] a) C. C. C. Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676–
707; Angew. Chem. 2010, 122, 686–718; b) T. Hamada, A. Chieffi, J.
Ahman, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 1261–1268; c) D. J.
Spielvogel, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 3500–3501;
d) G. Chen, F. Y. Kwong, H. O. Chan, W.-Y. Yu, A. S. C. Chan, Chem.
Commun. 2006, 1413–1415; e) X. Liao, Z. Weng, J. F. Hartwig, J. Am.
Chem. Soc. 2008, 130, 195–200; f) X. Xie, Y. Chen, D. Ma, J. Am. Chem.
Soc. 2006, 128, 16050–16051; g) S. Lee, J. F. Hartwig, J. Org. Chem.
2001, 66, 3402–3415; h) J. Garcꢃa-Fortanet, S. L. Buchwald, Angew.
Chem. Int. Ed. 2008, 47, 8108–8111; Angew. Chem. 2008, 120, 8228–
8231; i) Y.-X. Jia, J. M. Hillgren, E. L. Watson, S. P. Marsden, E. P. Kundig,
Chem. Commun. 2008, 4040–4042; j) J. Guo, S. Dong, Y. Zhang, Y.
Kuang, X. Liu, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 10245–
10249; Angew. Chem. 2013, 125, 10435–10439; k) V. L. Rendina, H. Z.
Kaplan, J. S. Kingsbury, Synthesis 2012, 686–693.
majuscula. A number of synthetic approaches have been de-
veloped for the asymmetric synthesis of (+)-tanikolide by us
and others.[18] Starting with a-allyl- a-arylcyclopentanone (1b),
Grubbs’ cross metathesis with 1-decene furnished disubstitut-
ed alkene (1c). Reduction of the alkene and carbonyl groups
led to alcohol (1e, dr=5:1) was subsequently protected as the
acetate (1 f). Cleavage of the aryl group was accomplished
under RuO4-catalysis forming carboxylic acid (1g),[19] demon-
strating the power of possessing a functionalisable aryl group,
in contrast to previous related work with methyl or benzyl sub-
stituents.[8] Finally, reduction afforded the diol (1h), an ad-
vanced intermediate in a previous synthesis of (+)-taniko-
lide.[20]
[3] a) I. Shimizu, T. Yamada, J. Tsuji, Tetrahedron Lett. 1980, 21, 3199–3202;
b) T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, T. Saegusa, J. Am. Chem. Soc.
1980, 102, 6381–6384.
[4] J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 1793–1796.
[5] J. Tsuji, I. Minami, I. Shimizu, Chem. Lett. 1983, 12, 1325–1326.
[6] J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 4713–4714.
[7] D. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044–15045.
[8] a) J. T. Mohr, B. M. Stoltz, Chem. Asian J. 2007, 2, 1476–1491; b) A. Y.
Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2745–2759; c) D. C. Behen-
na, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nat.
Chem. 2011, 4, 130–133; d) J. A. Keith, D. C. Behenna, N. Sherden, J. T.
Mohr, S. Ma, S. C. Marinescu, R. J. Nielsen, J. Oxgaard, B. M. Stoltz, W. A.
Goddard, J. Am. Chem. Soc. 2012, 134, 19050–19060; e) D. C. Behenna,
J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. M. Harned, K. Tani, M. Seto,
S. Ma, Z. Novꢄk, M. R. Krout, R. M. McFadden, J. L. Roizen, J. A. Enquist,
D. E. White, S. R. Levine, K. V. Petrova, A. Iwashita, S. C. Virgil, B. M.
Stoltz, Chem. Eur. J. 2011, 17, 14199–14223; f) B. M. Trost, B. Schꢅffner,
M. Osipov, D. A. A. Wilton, Angew. Chem. Int. Ed. 2011, 50, 3548–3551;
Angew. Chem. 2011, 123, 3610–3613; g) B. M. Trost, K. Lehr, D. J. Mi-
chaelis, J. Xu, A. K. Buckl, J. Am. Chem. Soc. 2010, 132, 8915–8917;
In conclusion, a highly enantioselective Pd-catalysed DAAA
of a-aryl-b-keto esters has been developed employing the
(R,R)-ANDEN-phenyl Trost ligand L4. Under these conditions,
substrates containing di-ortho-substituted aryl groups gave ex-
cellent enantioselectivities (>99.9% ee) of the (S)-a-allyl-a-aryl-
cyclopentanone products. Mono-ortho-substituted aryl groups
gave good to very high levels of enantioinduction (88 to 97%
ee). The absence of an ortho-substituent afforded the corre-
sponding products with good enantioselectivities (83 to 84%
&
&
Chem. Eur. J. 2016, 22, 1 – 6
4
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!