4
Tetrahedron Letters
W.; Xia, C. G.; Li J. W.; Li F. W. Chin. J. Org. Chem. 2004, 24,
Feng, J.; Lu, G.; Lv, M.; Cai, C. J. Organomet. Chem. 2014, 761,
28–31. (q) Malmgren, J.; Nagendiran, A.; Tai, C. W.; Bäckvall, J.
E.; Olofsson, B. Chem. Eur. J. 2014, 20, 13531–13535. (r) Lee,
P.-S.; Yoshikai, N. Org. Lett. 2015, 17, 22–25. (s) Zhang, H.-J.;
Wu, Z.; Lin, W.; Wen, T.-B. Chin. J. Chem. 2015, 33, 517–521. (t)
Moriyama, K.; Ishida, K.; Togo, H. Chem. Commun. 2015, 51,
2273–2276. (u) Gemoets, H; Kalvet, I.; Nyuchev, A. V.; Erdmann,
N.; Hessel, V.; Schoenebeck, F.; Noёl T. Chem. Sci. 2016, 7, in
press.
1501–1512. (d) Bai, L.; Wang, J.-X. Curr. Org. Chem. 2005, 9,
535–553. (e) Gracias, V.; Iyengar, R. Chemtracts 2005, 18, 339–
348. (f) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–
286. (g) Weng, Z.; Teo, S.; Hor, T. A. Acc. Chem. Res. 2007, 40,
676–684. (h) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008,
41, 1461–1473. (i) Suzuki, A. Angew. Chem. Int. Ed. 2011, 50,
6722–6737. (j) Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.;
Basset, J.-M.; Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181–
5203. (k) Mora, M.; Jimenez-Sanchidrian, C.; Rafael Ruiz, J. Curr.
Org. Chem. 2012, 16, 1128–1150. (l) Heravi, M. M.; Hashemi, E.
Monatsh. Chem. 2012, 143, 861–880. (m) Lennox, A. J.;
13. (a) Yang, J.; Liu, S.; Zheng, J. F.; Zhou, J. S. Eur. J. Org. Chem.
2012, 2012, 6248–6259. (b) Zou, Y.; Yue, G.; Xu, J.; Zhou, J. S.
Eur. J. Org. Chem. 2014, 2014, 5901–5905.
14. Recent examples for mesitylboronic acid: (a) Watanabe, T.;
Miyaura, N.; Suzuki, A. Synlett 1992, 207–210. (b) Littke, A. F.;
Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020–4028. (c)
Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci.
2012, 3, 2165–2169. (d) Yamaguchi, K.; Kondo, H.; Yamaguchi,
J.; Itami, K. Chem. Sci. 2013, 4, 3753–3757.
15. General procedure for condition optimization: In an argon-
filled glove box, Pd(OAc)2 (0.7 mg, 0.003 mmol), PCy3(1.0 mg,
0.0036 mmol), solvent (0.4 mL) and n-dodecane (5 µL) were
charged into a 10-mL reaction tube. After stirring for 15 min,
boronic acid (0.12 mmol), base (0.162 mmol) and bromide (0.06
mmol) were added successively. The mixture was vigorously
stirred in a preheated oil bath at 100 oC for 6 h and at 120 oC for
24h. At intervals, an aliquot of the reaction mixture was taken and
passed through a short plug of silical gel with diethyl ether
washing. The filtrates were subjected to GC analysis to determine
the conversion of the organic bromides and yield of the Suzuki
products.
Lloyd‐Jones, G. C. Angew. Chem. Int. Ed. 2013, 52, 7362–7370.
(n) -Melchor, M.; Braga, A. A.; Lledós, A.; Ujaque, G.;
Maseras, F. Acc. Chem. Res. 2013, 46, 2626–2634. (o) Han, F.-S.
Chem. Soc. Rev. 2013, 42, 5270–5298. (p) Kumar, A.; Rao, G. K.;
Kumar, S.; Singh, A. K. Dalton Trans. 2013, 42, 5200–5223. (q)
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello,
P. Molecules 2013, 18, 1188–1213. (r) Hussain, I; Capricho, J.;
Yawer, M. A. Adv. Synth. Catal. 2016, 358, in press.
(a) Billingsley, K. L.; Anderson, K. W.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2006, 45, 3484–3488. (b) Billingsley, K.;
Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358–3366. (c)
Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009,
131, 6961–6963. (d) Molander, G. A.; Canturk, B.; Kennedy, L. E.
J. Org. Chem. 2009, 74, 973–980.
3.
4.
5.
(a) Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem. Int. Ed.
2006, 45, 1282–1284. (b) Fleckenstein, C. A.; Plenio, H. J. Org.
Chem. 2008, 73, 3236–3244. (c) Fleckenstein, C. A.; Plenio, H.
Chem. Eur. J. 2008, 14, 4267–4279.
16. Typical procedure for Suzuki coupling reactions: In an argon-
filled glove box, to a 25 mL Schlenk tube was charged
sequentially Pd(OAc)2 (5.6 mg, 0.025 mmol) and PCy3 (8.4 mg,
0.03 mmol), t-BuOH (2.8 mL) and n-dodecane (20 µL). After
stirring for 15 min, mesitylboronic acid or (2, 6-dimethylphenyl)
boronic acid (164 mg, 1.0 mmol), Na2CO3 (143 mg, 1.35 mmol)
and 3-bromo-N-methyl indole (105 mg, 0.5 mmol) or a solution of
3-bromo-N-alkylindole (105 mg, 0.5 mmol) in t-BuOH were
added. The mixture was vigorously stirred in a pre-warmed oil
bath at 120 oC until the starting material was almost fully
comsumed (monitored by GC or TLC). At the end of the reaction,
the mixture was cooled to room temperature and added 10 mL
H2O. The aqueous phase was further extracted with Et2O (10
mL×3). The combined organic layers were dried over Mg2SO4,
and then concentrated on a rotary evaporator. The residue was
purified by silica gel flash chromatography to obtain the desired
coupling product. 1a: 1H NMR (500 MHz): δ = 7.64 (d, J = 7.5
Hz, 1 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.25-7.21 (m, 1 H), 7.15-7.12
(m, 1 H), 6.98 (s, 2 H), 6.34 (s, 1 H), 3.42 (s, 3 H), 2.36 (s, 3 H),
2.03 (s, 6 H). 13C MR (125 MHz): δ = 139.1, 138.6, 138.3, 137.0,
129.3, 128.3, 128.0, 120.8, 120.3, 119.3, 109.3, 100.9, 29.6, 21.14,
20.2. GC-MS (EI): Calcd for C18H19N M+: 249.1. Found: 249.1.
17. Kato, S.-i.; Furuya, T.; Nitani, M.; Hasebe, N.; Ie, Y.; Aso, Y.;
Yoshihara, T.; Tobita, S.; Nakamura, Y. Chem. Eur. J. 2015, 21,
3115–3128.
(a) Guram, A. S.; King, A. O.; Allen, J. G.; Wang, X.; Schenkel,
L. B.; Chan, J.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.;
Martinelli, M. J. Org. Lett. 2006, 8, 1787–1789. (b) Guram, A. S.;
Wang, X.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.; Martinelli, M.
J. J. Org. Chem. 2007, 72, 5104–5112. (c) So, C. M.; Yeung, C.
C.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2008, 73, 7803–7806.
(d) So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795–
2798.
(a) Kohmoto, S.; Kashman, Y.; McConnell, O. J.; Rinehart Jr, K.
L.; Wright, A.; Koehn, F. J. Org. Chem. 1988, 53, 3116–3118. (b)
Cutignano, A.; Bifulco, G.; Bruno, I.; Casapullo, A.; Gomez-
Paloma, L.; Riccio, R. Tetrahedron 2000, 56, 3743–3748.
Liu, J.-F.; Jiang, Z.-Y.; Wang, R.-R.; Zheng, Y.-T.; Chen, J.-J.;
Zhang, X.-M.; Ma, Y.-B. Org. Lett. 2007, 9, 4127–4129.
Kim, J.; Movassaghi, M. Acc. Chem. Res. 2015, 48, 1159–1171.
Fraley, M. E.; Hoffman, W. F.; Arrington, K. L.; Hungate, R. W.;
Hartman, G. D.; McFall, R. C.; Coll, K. E.; Rickert, K.; Thomas,
K. A.; McGaughey, G. B. Curr. Med. Chem. 2004, 11, 709–719.
6.
7.
8.
9.
10. (a) Joule, J. A. Sci. Synth. 2001, 10, 361–365. (b) Humphrey, G.
R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911. (c) Dalpozzo,
R. Chem. Soc. Rev. 2015, 44, 742–778.
11. (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920. (b)
Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644–4680.
12. See a review: Sandtorv, A. H. Adv. Syn. Catal. 2015, 357, 2403–
2435. For recent examples: (a) Hamel, P.; Zajac, N.; Atkinson, J.
G.; Girard, Y. J. Org. Chem. 1994, 59, 6372–6377. (b) Macleod,
C.; McKiernan, G. J.; Guthrie, E. J.; Farrugia, L. J.; Hamprecht,
D. W.; Macritchie, J.; Hartley, R. C. J. Org. Chem. 2003, 68, 387–
401. (c) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897–2900. (d)
Denmark, S. E.; Baird, J. D. Org. Lett. 2004, 6, 3649–3652. (e)
Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005,
127, 8050–8057. (f) Deprez, N. R.; Kalyani, D.; Krause, A.;
Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972–4973. (g)
Oskooie, H. A.; Heravi, M. M.; Behbahani, F. K. Molecules 2007,
12, 1438–1446. (h) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc.
2008, 130, 2926–2927. (i) Phipps, R. J.; Grimster, N. P.; Gaunt,
M. J. J. Am. Chem. Soc. 2008, 130, 8172–8174. (j) Nandurkar, N.
S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M. Tetrahedron
Lett. 2008, 49, 1045–1048. (k) Zhao, J.; Zhang, Y.; Cheng, K. J.
Org. Chem. 2008, 73, 7428–7431. (l) Liang, Z.; Yao, B.; Zhang,
Y. Org. Lett. 2010, 12, 3185–3187. (m) Alsabeh, P. G.; Lundgren,
R. J.; Longobardi, L. E.; Stradiotto, M. Chem. Commun. 2011, 47,
6936–6938. (n) Huang, Y.; Lin, Z.; Cao, R. Chem. Eur. J. 2011,
17, 12706–12712. (o) Jadhav, J.; Gaikwad, V.; Kurane, R.;
Salunkhe, R.; Rashinkar, G. Synlett 2012, 23, 2511–2515. (p)
18. (a) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem.
Sci. 2012, 3, 2165–2169. (b) Chen, C.-Y.; Dormer, P. G. J. Org.
Chem. 2005, 70, 6964–6967.
19. (a) Bhunia K. S.; Polley, A.; Natarajan, R.; Jana, R. Chem. Eur. J.
2015, 21, 16786–16791. (b) Mochida, K.; Shimizu, M.; Hiyama,
T. J. Am. Chem. Soc. 2009, 131, 8350–8351. (c) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173–1193 and
references here cited.
20. Saulnier, M. G.; Gribble, G. W. J. Org. Chem. 1982, 47, 757–761.
Supplementary Material
Supplementary material (general experimental details, lists of
spectral data, copies of 1H and 13C NMR spectra for all
compounds) can be found in the online version of this article.
Click here to remove instruction text...