Page 5 of 7
Journal of the American Chemical Society
Tetrahalides via Asymmetric β-Elimination. J. Am. Chem. Soc. 2017, 139,
6431–6436. (i) Zhou, Z.; Wang, Z.-X.; Zhou, Y.-C.; Xiao, W.; Ouyang,
Q.; Du, W.; Chen, Y.-C. Switchable regioselectivity in amine-catalysed
asymmetric cycloadditions. Nat. Chem. 2017, 9, 590–594.
In conclusion, we have developed
a
diastereo- and
1
2
3
4
5
6
7
8
enantioselective catalytic method which afforded highly poly
chiral axial motifs. The reactions proceeded smoothly under mild
reaction conditions and showed broad substrate scope affording
the desired products containing two to three stereogenic axes in
good yields with excellent diastereo- and enantioselectivities. The
control experiments performed showed that the generation of
tetra-substituted VQM intermediate was the key to the excellent
enantioselectivity. The obtained unique topology may contribute
to the development of new chiral catalysts or ligands. Moreover,
the investigation of the fluorescent properties of these scaffolds is
ongoing in our laboratory.
(3) For selected reviews on atropisomers, see: (a) Bringmann, G.;
Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M.
Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angew.
Chem., Int. Ed. 2005, 44, 5384–5427. (b) Bringmann, G.; Gulder, T.;
Gulder, T. A. M.; Breuning, M. Atroposelective Total Synthesis of
Axially Chiral Biaryl Natural Products Chem. Rev. 2011, 111, 563–639.
(c) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Recent
advances and new concepts for the synthesis of axially stereoenriched
biaryls. Chem. Soc. Rev. 2015, 44, 3418–3430. (d) Kumarasamy, E.;
Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Nonbiaryl and Heterobiaryl
Atropisomers: Molecular Templates with Promise for Atropselective
Chemical Transformations. Chem. Rev. 2015, 115, 11239–11300. (e)
Zilate, B.; Castrogiovanni, A.; Sparr, C. Catalyst-Controlled
Stereoselective Synthesis of Atropisomers. ACS Catal. 2018, 8, 2981–
2988.
(4) For selected examples on compounds with two or more stereogenic
axes, see: (a) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. Iridium
Complex-Catalyzed Highly Enantio- and Diastereoselective [2+2+2]
Cycloaddition for the Synthesis of Axially Chiral Teraryl Compounds. J.
Am. Chem. Soc. 2004, 126, 8382–8383. (b) Shibata, T.; Arai, Y.; Takami,
K.; Tsuchikama, K.; Fujimoto, T.; Takebayashi, S.; Takagi, K. Iridium-
Catalyzed Enantioselective [2+2+2] Cycloaddition of Diynes and
Monoalkynes for the Generation of Axial Chiralities. Adv. Synth. Catal.
2006, 348, 2475–2483. (c) Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi,
K.; Hirano, M. Rh-Catalyzed Synthesis of Helically Chiral and Ladder-
Type Molecules via [2+2+2] and Formal [2+1+2+1] Cycloadditions
Involving C-C Triple Bond Cleavage. J. Am. Chem. Soc. 2007, 129,
12078–12079. (d) Oppenheimer, J.; Hsung, R. P.; Figueroa, R.; Johnson,
W. L. Stereochemical Control of Both C−C and C−N Axial Chirality in
the Synthesis of Chiral N,O-Biaryls. Org. Lett. 2007, 9, 3969–3972. (e)
Suda, T.; Noguchi, K.; Hirano, M.; Tanaka, K. Highly Enantioselective
Synthesis of N,N-Dialkylbenzamides with Aryl-Carbonyl Axial Chirality
by Rhodium-Catalyzed [2+2+2] Cycloaddition. Chem. Eur. J. 2008, 14,
6593–6596. (f) Ogaki, S.; Shibata, Y.; Noguchi, K.; Tanaka, K.
Enantioselective Synthesis of Axially Chiral Hydroxy Carboxylic Acid
Derivatives by Rhodium-Catalyzed [2+2+2] Cycloaddition. J. Org. Chem.
2011, 76, 1926–1929. (g) Barrett, K. T.; Metrano, A. J.; Rablen, P. R.;
Miller, S. J. Spontaneous transfer of chirality in an atropisomerically
enriched two-axis system. Nature 2014, 509, 71–75. (h) Lotter, D.;
Neuburger, M.; Rickhaus, M.; Häussinger, D.; Sparr, C. Stereoselective
Arene-Forming Aldol Condensation: Synthesis of Configurationally
Stable Oligo-1,2-naphthylenes. Angew. Chem., Int. Ed. 2016, 55, 2920–
2923. (i) Lotter, D.; Castrogiovanni, A.; Neuburger, M.; Sparr, C.
Catalyst-Controlled Stereodivergent Synthesis of Atropisomeric Multiaxis
Systems. ACS Cent. Sci. 2018, 4, 656–660.
(5) (a) Kawabata, T.; Yahiro, K.; Fuji, K. Memory of Chirality:
Enantioselective Alkylation Reactions at an Asymmetric Carbon Adjacent
to a Carbonyl Group. J. Am. Chem. Soc. 1991, 113, 9694–9696. (b) Baker,
R. W.; Hambley, T. W.; Turner, P.; Wallace, B. J. Central to axial
chirality transfer via double bond migration: asymmetric synthesis and
determination of the absolute configuration of axially chiral 1-(3’-
indenyl)naphthalenes. Chem. Commun. 1996, 2571–2572. (c) Hattori, T.;
Date, M.; Sakurai, K.; Morohashi, N.; Kosugi, H.; Miyano, S. Highly
stereospecific conversion of C-centrochirality of a 3,4-dihydro-2H-1,1’-
binaphthalen-1-ol into axial chirality of a 3,4-dihydro-1,1’-binaphthalene.
Tetrahedron Lett. 2001, 42, 8035–8038. (d) Feng, J.; Li, B.; He, Y.; Gu, Z.
Enantioselective Synthesis of Atropisomeric Vinyl Arene Compounds by
Palladium Catalysis: A Carbene Strategy. Angew. Chem., Int. Ed. 2016,
55, 2186–2190. (e) Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.;
Tan, B. Organocatalytic atroposelective synthesis of axially chiral
styrenes. Nat. Commun. 2017, 8, 15238. (f) Jolliffe, J. D.; Armstrong, R.
J.; Smith, M. D. Catalytic enantioselective synthesis of atropisomeric
biaryls by a cation-directed O-alkylation. Nat. Chem. 2017, 9, 558–562.
(g) Feng, J.; Li, B.; Jiang, J.; Zhang, M.; Ouyang, W.; Li, C.; Fu, Y.; Gu,
Z. Visible Light Accelerated Vinyl C–H Arylation in Pd-Catalysis:
Application in the Synthesis of ortho Tetra-substituted Vinylarene
Atropisomers. Chinese J. Chem. 2018, 36, 11–14.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedure and characterization data for all the
products. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
*yhl198151@cqu.edu.cn
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This study was supported by the Scientific Research Foundation
of China (Grant 21772018).
REFERENCES
(1) For selected reviews, see: (a) Volla, C. M. R.; Atodiresei, I.;
Rueping, M. Catalytic C-C Bond-Forming Multi-Component Cascade or
Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric
Organocatalysis. Chem. Rev. 2014, 114, 2390–2431. (b) Wang, Y.; Lu, H.;
Xu, P.-F. Asymmetric Catalytic Cascade Reactions for Constructing
Diverse Scaffolds and Complex Molecules. Acc. Chem. Res. 2015, 48,
1832–1844. (c) Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after
“Heterodiene Syntheses with α,β-Unsaturated Carbonyl Compounds”:
Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev.
2018, 118, 2080–2248.
(2) For selected examples on contiguous stereocenters, see: (a) Liu, X.;
Fox, J. M. Enantioselective, Facially Selective Carbomagnesation of
Cyclopropenes. J. Am. Chem. Soc. 2006, 128, 5600–5601. (b) Tan, B.;
Shi, Z.; Chua, P. J.; Zhong, G. Control of Four Stereocenters in an
Organocatalytic Domino Double Michael Reaction: Efficient Synthesis of
Multisubstituted Cyclopentanes. Org. Lett. 2008, 10, 3425–3428. (c)
Sparr, C.; Gilmour, R. Cyclopropyl Iminium Activation: Reactivity
Umpolung in Enantioselective Organocatalytic Reaction Design. Angew.
Chem., Int. Ed. 2011, 50, 8391–8395. (d) Dell’Amico, L.; Rassu, G.;
Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi,
G.; Zanardi, F. Exploring the Vinylogous Reactivity of Cyclohexenylidene
Malononitriles: Switchable Regioselectivity in the Organocatalytic
Asymmetric Addition to Enals Giving Highly Enantioenriched
Carbabicyclic Structures. J. Am. Chem. Soc. 2014, 136, 11107–11114. (e)
Watson, C. G.; Balanta, A.; Elford, T. G.; Essafi, S.; Harvey, J. N.;
Aggarwal, V. K. Construction of Multiple, Contiguous Quaternary
Stereocenters in Acyclic Molecules by Lithiation-Borylation. J. Am.
Chem. Soc. 2014, 136, 17370–17373. (f) Kiss, E.; Campbell, C. D.;
Driver, R. W.; Jolliffe, J. D.; Lang, R.; Sergeieva, T.; Okovytyy, S.; Paton,
R. S.; Smith, M. D. A Counterion-Directed Approach to the Diels–Alder
Paradigm: Cascade Synthesis of Tricyclic Fused Cyclopropanes. Angew.
Chem., Int. Ed. 2016, 55, 13813–13817. (g) Alam, R.; Diner, C.; Jonker,
S.; Eriksson, L.; Szabó, K. J. Catalytic Asymmetric Allylboration of
Indoles and Dihydroisoquinolines with Allylboronic Acids:
Stereodivergent Synthesis of up to Three Contiguous Stereocenters.
Angew. Chem., Int. Ed. 2016, 55, 14417–14421. (h) Tan, Y.; Luo, S.; Li,
D.; Zhang, N.; Jia, S.; Liu, Y.; Qin, W.; Song, C. E.; Yan, H.
Enantioselective Synthesis of anti-syn-Trihalides and anti-syn-anti-
(6) For selected reviews, see: (a) Flynn, A. B.; Ogilvie, W. W.
Stereocontrolled Synthesis of Tetrasubstituted Olefins. Chem. Rev. 2007,
107, 4698–4745. (b) Negishi, E.; Huang, Z.; Wang, G.; Mohan, S.; Wang,
C.; Hattori, H. Recent Advances in Efficient and Selective Synthesis of
ACS Paragon Plus Environment