Benign Perfluoroalkylation of Aniline Derivatives
[9]
[10]
[11]
X. Wang, J. C. Schouten, V. Hessel, T. Noël, J. Flow Chem.
2014, 4, 12–17; c) N. J. W. Straathof, H. P. L. Gemoets, X.
Wang, J. C. Schouten, V. Hessel, T. Noël, ChemSusChem 2014,
7, 1612–1617; d) J.-B. Xia, C. Zhu, C. Chen, J. Am. Chem. Soc.
2013, 135, 17494–175001.
Y. Ye, M. S. Sanford, Synlett 2012, 23, 2005.
T. Liu, Q. Shen, Eur. J. Org. Chem. 2012, 6679.
a) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470;
b) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed.
2013, 52, 8214; Angew. Chem. 2013, 125, 8372; c) F. O’Hara,
R. D. Baxter, A. G. O’Brien, M. R. Collins, J. A. Dixon, T. Fu-
jiwara, Y. Ishihara, P. S. Baran, Nature Protocols 2013, 8, 1042.
K. Yuan, J.-F. Soulé, H. Doucet, ACS-Catal. 2015, 5, 978–991.
a) L. He, K. Natte, J. Rabeah, C. Taeschler, H. Neumann, A.
Bruckner, M. Beller, Angew. Chem. Int. Ed. 2015, 54, 4320–
4324; Angew. Chem. 2015, 127, 4394; b) R. N. Loy, M. S. San-
ford, Org. Lett. 2011, 13, 2548–2551.
F. Sladojevich, E. McNeill, J. Borgel, S.-L. Zheng, T. Ritter,
Angew. Chem. Int. Ed. 2015, 54, 1–6; Angew. Chem. 2015, 127,
1.
a) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115,
650–682; b) B. Pegot, Y. Macé, C. Urban, P. Diter, J.-C. Bla-
zejewski, E. Magnier, J. Fluorine Chem. 2012, 134, 156–159.
a) C. Alonso, E. Martínez de Marigorta, G. Rubiales, F. Pala-
cios, Chem. Rev. 2015, 115, 1847–1935; b) T. Takagi, T. Kana-
mori, J. Fluorine Chem. 2011, 427–429.
[28] a) B. Zhang, A. Studer, Org. Lett. 2014, 16, 3990–3993; b) M.
Nappi, G. Bergonzini, P. Melchiorre, Angew. Chem. Int. Ed.
2014, 53, 4921; Angew. Chem. 2014, 126, 5021.
[29] a) M. Moreno-Mañas, R. P. S. Villarroya, Synlett 1999, 1996–
1998; b) T. Fuchikami, I. Ojima, J. Fluorine Chem. 1983, 22,
541–556; c) B. R. Langlois, E. Laurent, N. Roidot, Tetrahedron
Lett. 1991, 32, 7525–7528.
[30] a) C. Wakselman, M. Tordeux, J. Chem. Soc., Chem. Commun.
1987, 1701–1703; b) M. Tordeux, B. Langlois, C. Wakselman,
J. Chem. Soc. Perkin Trans. 1 1990, 8, 2293–2299; c) W.-Y. Hu-
ang, W.-P. Ma, W. Wang, Chin. J. Chem. 1990, 8, 175.
[31] M. Jonsson, D. D. M. Wayner, J. Lusztyk, J. Phys. Chem. 1996,
100, 17539–17543.
[32] a) A. Yu, Y. Liu, Z. Li, J.-P. Cheng, J. Phys. Chem. A 2007,
111, 9978–9987; b) F. G. Bordwell, X.-M. Zhang, J.-P. Cheng,
J. Org. Chem. 1993, 58, 6410–6416.
[33] a) N. Karakostas, S. Naumov, O. Brede, J. Phys. Chem. A 2009,
113, 14087–14094; b) C.-C. Zeng, J. Y. Becker, J. Org. Chem.
2004, 69, 1053–1069; c) S. Fukuzumi, J. Yuasa, N. Satoh, T.
Suenobu, J. Am. Chem. Soc. 2004, 126, 7585–7594; d) S. Di-
leesh, K. R. Gopidas, Chem. Phys. Lett. 2000, 330, 397–402.
[34] a) C. Lambert, T. Sarna, T. G. Truscott, J. Chem. Soc. Faraday
Trans. 1990, 86, 3879–3882; b) R. A. Thorson, G. R. Woller,
Z. L. Driscoll, B. E. Geiger, C. A. Moss, A. L. Schlapper, E. D.
Speetzen, E. Bosch, M. Erdélyi, N. P. Bowling, Eur. J. Org.
Chem. 2015, 1685–1695; c) H. P. Cao, J. C. Xiao, J. Fluorine
Chem. 2006, 127, 1079.
[12]
[13]
[14]
[15]
[16]
[17]
a) F. O’Hara, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc.
2013, 135, 12122–12134; b) Y. Fujiwara, J. A. Dixon, F.
O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D.
Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P. S. Ba-
ran, Nature 2012, 492, 95–100.
[18] L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv.
Synth. Catal. 2013, 355, 2203–2207.
[19] S. Zhong, A. Hafner, C. Hussal, M. Nieger, S. Bräse, RSC Adv.
2015, 5, 6255–6258.
[20] M. Matsugi, M. Hasegawa, S. Hasebe, S. Takai, R. Suyama,
Y. Wakita, K. Kudo, H. Imamura, T. Hayashi, S. Haga, Tetra-
hedron Lett. 2008, 49, 4189–4191.
[21] A. Studer, D. Curran, Nature Chem. 2014, 6, 765–773.
[22] S. Barata-Vallejo, M. Martin Flesia, B. Lantaño, J. E. Arguello,
A. B. Peñéñory, A. Postigo, Eur. J. Org. Chem. 2013, 998–1008.
[23] B. Lantaño, S. Barata-Vallejo, M. R. Torviso, S. M. Bonesi,
J. E. Arguello, A. Postigo, J. Fluorine Chem. 2014, 161, 149–
165.
[24] L. Cui, Y. Matusaki, N. Tada, T. Miura, B. Uno, A. Itoh, Adv.
Synth. Catal. 2013, 355, 2203–2207.
[25] a) A. Maroz, R. Hermann, S. Naumov, O. Brede, J. Phys.
Chem. A 2005, 109, 4690–4696.
[26] D. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224–228.
[27] a) M. Iizuka, M. Yoshida, J. Fluorine Chem. 2009, 130, 926–
932; b) N. J. W. Straathof, D. J. G. P. van Osch, A. Schouten,
[35] a) H. Yi, A. Jutand, A. Lei, Chem. Commun. 2015, 51, 545–
548; b) A. B. Pierini, J. S. Duca, J. Chem. Soc. Perkin Trans. 2
1995, 9, 1821–1828.
[36] a) D. A. Armstrong, W. L. Waltz, A. Rauk, Can. J. Chem.
2006, 84, 1614–1619; b) H. Liu, W. Feng, C. W. Kee, Y. Zhao,
D. Leow, Y. Pan, C.-H. Tan, Green Chem. 2010, 12, 953–956.
[37] a) C. Lambert, I. E. Kochevar, Photochem. Photobiol. 1997, 66,
15–25; b) D. Burget, J. P. Fouassier, J. Chem. Soc. Faraday
Trans. 1998, 94, 1849–1854; c) C. P. Andrieux, L. G. Clis, M.
Medebielle, P. Pinson, J. M. Saveant, J. Am. Chem. Soc. 1990,
112, 3509–3520.
[38] Z. Markovic, D. Amic, D. Milenkovic, J. M. Dimitri-Markovic,
S. Markovic, Phys. Chem. Chem. Phys. 2013, 15, 7370–7378.
Received: September 12, 2015
Published Online: November 18, 2015
Eur. J. Org. Chem. 2015, 7869–7875
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7875