Journal of the American Chemical Society
Page 4 of 5
search for a suitable base, leading us to a satisfactory
condition: SrCO3(s) at 95
C.22 Under the optimized condi-
tions, 11 was isolated in 87% yield and fully characterized.
1
2
3
°
Finally, 11 was subjected to macroketocyclization under the
stoichiometric conditions. It is worthwhile noting that,
contrary to model compounds 4a,b, the major side-reaction in
this series was the reductive quentching of -CH2Br to CH3
rather than the dimerization, thereby suggesting the possibility
of using a higher concentration. We assume that the
difference in behavior might be attributed to the difference in
conformational property of 11, compared to 4; namely, 11
might have adopted a favorable conformation required for the
macroketocyclization. Consistent with this assumption, the
macroketocyclization was achieved, without noticeable di-
merization, even at 27 mM concentration, to furnish ketone 3
in 64% yield (52 mg scale).23 Spectroscopic comparisons (1H-
and 13C-NMR, HR-MS) firmly established that 3 thus ob-
tained was identical with the authentic sample.3,5 Lastly, mac-
rocyclic ketone 3 was converted into eribulin in three steps.24
2 (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.;
4
5
6
7
8
9
Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola, P. M.; Spero, D. M.;
Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162. (b) Ueda, A.;
Yamamoto, A.; Kato, D.; Kishi, Y. J. Am. Chem. Soc. 2014, 136,
5171 and references cited therein.
3 For discovery of eribulin, see: Zheng, W.; Seletsky, B. M.; Pal-
me, M. H.; Lydon, P. J.; Singer, L. A.; Chase, C. E.; Lemelin, C. A.;
Shen, Y.; Davis, H.; Tremblay, L.; Towle, M. J.; Salvato, K. A.;
Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield, B. A.; Yu, M. J.
Bioorg. Med. Chem. Lett. 2004, 14, 5551.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4 For reviews on discovery of eribulin, see: (a) Yu, M. J.; M.; Ki-
shi, Y.; Littlefield, B. A. Anticancer Agents from Natural Products;
CRC Press: 2005, p 241. (b) Yu, M. J.; Zheng, W.; Seletsky, B. M.;
Littlefield, B. A.; Kishi, Y. Annu. Rep. Med. Chem.; John, E. M., Ed.;
Academic Press: 2011, Vol. 46, p 227.
5 For process development of eribulin, see: Austad, B. C.; Calkins,
T. L.; Chase, C. E.; Fang, F. G.; Horstmann, T. E.; Hu, Y.; Lewis, B.
M.; Niu, X.; Noland, T. A.; Orr, J. D.; Schnaderbeck, M. J.; Zhang,
H.; Asakawa, N.; Asai, N.; Chiba, H.; Hasebe, T.; Hoshino, Y.; Ishi-
zuka, H.; Kajima, T.; Kayano, A.; Komatsu, Y.; Kubota, M.; Kuroda,
H.; Miyazawa, M.; Tagami, K.; Watanabe, T. Synlett 2013, 24, 333
and preceding two papers.
In summary, a method has been developed for macroketo-
cyclization between an alkyl bromide and a thioester under
mild conditions. NbCpCl4 and CrCl3 are key components not
only for in-situ activation of alkyl bromide to alkylzinc halide
via a SET process but also for acceleration of Pd-mediated
coupling. Notably, this unique macroketocyclization does not
require any special template or functional group to be re-
moved after cyclization. Overall, the newly-developed
macroketocyclization has allowed us to synthesize eribulin
with the same synthetic strategy as the one used in the hali-
chondrins.
6 (a) ref. 2b. (b) Li, J.; Yan, W.; Kishi, Y. J. Am. Chem. Soc. 2015,
137, 6226 and the preceding paper.
7 For selected examples for macroketocyclization, see: (a) Nishi-
kawa, K.; Yoshimi, Y.; Maeda, K.; Morita, T.; Takahashi, I.; Itou, T.;
Inagaki, S.; Hatanaka, M. J. Org. Chem. 2013, 78, 582. (b) Tsuna,
K.; Noguchi, N.; Nakada, M. Tetrahedron Lett. 2011, 52, 7202. (c)
Porter, N. A.; Chang, V. H. T.; Magnin, D. R.; Wright, B. T. J. Am.
Chem. Soc. 1988, 110, 3554. (d) Kong, K.; Romo, D.; Lee, C. An-
gew. Chem., Int. Ed. 2009, 48, 7402. (e) Boger, D. L.; Mathvink, R.
J. J. Am. Chem. Soc. 1990, 112, 4008. (f) Kende, A. S.; Liu, K.; Kal-
dor, I.; Dorey, G.; Koch, K. J. Am. Chem. Soc. 1995, 117, 8258. (g)
Wu, J.; Panek, J. S. J. Org. Chem. 2011, 76, 9900. (h) Lowe, J. T.;
Panek, J. S. Org. Lett. 2008, 10, 3813.
ASSOCIATED CONTENT
Supporting Information
Additional data for Table 1, experimental procedures, characteri-
zation data, and copies of spectra. The Supporting Information is
available free of charge on the ACS Publications website.
8
In the previous synthesis, the macrocyclization was achieved by
an intramolecular Ni/Cr-mediated coupling at C13-C14, before con-
struction of the C8-C14 polycycle: see, (a) ref. 3. (b) Namba, K.;
Kishi, Y. J. Am. Chem. Soc. 2005, 127, 15382, (c) ref. 5. (d) Inanaga,
K.; Fukuyama, T.; Kubota, M.; Komatsu, Y.; Chiba, H.; Kayano, A.;
Tagami, K. Org. Lett. 2015, 17, 3158.
AUTHOR INFORMATION
Corresponding Author
9 Lee, J. H.; Kishi, Y. J. Am. Chem. Soc. 2016, 138, 7178.
10 We hoped to suppress undesired side-reactions by either slow
activation of RX and/or acceleration of transmetallation to avoid
accumulation of generated alkylzinc halides.
*kishi@chemistry.harvard.edu
Present Addresses
†The Dow Chemical Company, 2200 W. Salzburg Road,
Midland, MI 48686
11 The conversion was 58%, 71%, and 80% under Conditions A, B,
and C, respectively.
12 See Supporting Information for details.
Notes
13 For the case of intermolecular ketone coupling, we have sug-
gested a possibility that the early transition metals might shift equi-
librium from stable RZnX to higher-order orgnozincates and/or might
break Pd-Zn to restore Pd reactivity, respectively.
No competing financial interests have been declared.
ACKNOWLEDGMENT
14 There was one additional benefit in reducing an amount of the
reagent, i.e., isolation of the product was much easier with a lesser
amount of the reagent.
Financial support from the Eisai USA Foundation is gratefully
acknowledged.
15 These experimental data should allow us to identify a proper set-
ting for use of a syringe-pump.
REFERENCES
16 Liu, L.; Henderson, J. A.; Yamamoto, A.; Brémond, P.; Kishi,
Y. Org. Lett. 2012, 14, 2262.
17 Leonard, N. J.; Neelima Tetrahedron Lett. 1995, 36, 7833.
18 Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B.
S. Angew. Chem., Int. Ed. 2005, 44, 1378.
19 With the Cr-catalyst derived from unnat-i-Pr/PhCl2/OCy(Me)2
sulfonamide, the dr observed for this Ni/Cr-mediated coupling was
around 20:1 in the halichondrin series: see ref. 2b and Guo, H.; Dong,
1 (a) Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.;
Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem. Soc. 1985, 107,
4796. (b) Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986, 58, 701.
ACS Paragon Plus Environment