ACS Catalysis
Page 10 of 11
(1) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H.
(21) Centi, G. Vanadyl Pyrophosphate - A Critical Overview. Catal. Today
The chemistry of two-dimensional layered transition metal dichalcogenide
nanosheets. Nat. Chem. 2013, 5, 263-275.
(2) Ling, T.; Wang, J. J.; Zhang, H.; Song, S. T.; Zhou, Y. Z.; Zhao, J.; Du,
X. W. Freestanding Ultrathin Metallic Nanosheets: Materials, Synthesis,
and Applications. Adv. Mater. 2015, 27, 5396-5402.; Gitis, V. ; Chung, S.-
H.; Shiju, N. R. FlatChem 2018, 10, 39.
(3) Hong, J.; Jin, C.; Yuan, J.; Zhang, Z. Atomic Defects in Two-
Dimensional Materials: From Single-Atom Spectroscopy to Functionalities
in Opto-/Electronics, Nanomagnetism, and Catalysis. Adv. Mater. 2017, 29.
1606434.
(4) Bi, Y.; Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y. Ultrathin FeOOH
Nanolayers with Rich Oxygen Vacancies on BiVO4 Photoanodes for
Efficient Water Oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248-2252.
(5) Xiong, P.; Ma, R.; Sakai, N.; Sasaki, T. Genuine Unilamellar Metal
Oxide Nanosheets Confined in a Superlattice-like Structure for Superior
Energy Storage. ACS Nano 2018, 12, 1768-1777.
(6) Ng, W.; Gnanakumar, E.; Rothenberg, G.; Batyrev, E.; Sharma, S.;
Pujari, P.; Greer, H.; Zhou, W.; Sakidja, R.; Barsoum, M.; Shiju, N. R.
Ti3AlC2 MAX-phase as an efficient catalyst for oxidative dehydrogenation
of n-butane. Angew. Chem. Int. Ed. 2018, 57, 1485-1490.
(7) Yang, W.; Zhang, X.; Xie, Y. Advances and challenges in chemistry of
two-dimensional nanosheets. Nano Today 2016, 11, 793-816.
(8) Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature
2013, 499-425, 419.
(9) Di, J.; Xia, J.; Li, H.; Liu, Z. Freestanding atomically-thin two-
dimensional materials beyond graphene meeting photocatalysis:
Opportunities and challenges. Nano Energy 2017, 35, 79-91.
(10) Zhu, W.; Gao, X.; Li, Q.; Li, H.; Chao, Y.; Li, M.; Mahurin, S. M.; Li,
H.; Zhu, H.; Dai, S. Controlled Gas Exfoliation of Boron Nitride into Few-
Layered Nanosheets. Angew. Chem. Int. Ed. 2016, 55, 10766-10770.
(11) Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C. L.;
Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed
gold nanostructures. Nat. Commun. 2011, 2, 292.
(12) Cheng, W.; He, J.; Yao, T.; Sun, Z.; Jiang, Y.; Liu, Q.; Jiang, S.; Hu,
F.; Xie, Z.; He, B.; Yan, W.; Wei, S. Half-Unit-Cell α-Fe2O3 Semiconductor
Nanosheets with Intrinsic and Robust Ferromagnetism. J. Am. Chem. Soc.
2014, 136, 10393-10398.
(13) Wang, J.; Xu, Y.; Ding, B.; Chang, Z.; Zhang, X.; Yamauchi, Y.; Wu,
K. C.-W. Confined Self-Assembly in Two-Dimensional Interlayer Space:
Monolayered Mesoporous Carbon Nanosheets with In-Plane Orderly
Arranged Mesopores and High Graphitized Framework. Angew. Chem. Int.
Ed. 2018, 57, 2894-2898.
(14) Sun, Z.; Liao, T.; Dou, Y.; Hwang, S. M.; Park, M.-S.; Jiang, L.; Kim,
J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional
transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.
(15) Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.;
Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H.
Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science
2010, 329, 550-553.
(16) Son, J. S.; Wen, X. D.; Joo, J.; Chae, J.; Baek, S. i.; Park, K.; Kim, J.
H.; An, K.; Yu, J. H.; Kwon, S. G.; Choi, S. H.; Wang, Z.; Kim, Y. W.;
Kuk, Y.; Hoffmann, R.; Hyeon, T. Large ‐Scale Soft Colloidal Template
Synthesis of 1.4ꢀnm Thick CdSe Nanosheets. Angew. Chem. Int. Ed. 2009,
48, 6861-6864.
(17) Feng, W.; Zhenxing, W.; Ahmed, S. T.; Yao, W.; Fengmei, W.;
Xueying, Z.; Qisheng, W.; Kai, X.; Yun, H.; Lei, Y.; Chao, J.; Jun, H. Two
‐ Dimensional Non ‐ Layered Materials: Synthesis, Properties and
Applications. Adv. Funct. Mater. 2017, 27, 1603254.
(18) Dou, Y.; Zhang, L.; Xu, X.; Sun, Z.; Liao, T.; Dou, S. X. Atomically
thin non-layered nanomaterials for energy storage and conversion. Chem.
Soc. Rev. 2017, 46, 7338-7373.
(19) Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. Mechanistic
aspects of maleic anhydride synthesis from C4 hydrocarbons over
phosphorus vanadium oxide. Chem. Rev. 1988, 88, 55-80.
(20) Weng, W.; Al Otaibi, R.; Alhumaimess, M.; Conte, M.; Bartley, J. K.;
Dummer, N. F.; Hutchings, G. J.; Kiely, C. J. Controlling vanadium
phosphate catalyst precursor morphology by adding alkane solvents in the
reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. J. Mater. Chem. 2011,
21, 16136-16146.
1993, 16, 5-26.
1
2
3
4
5
6
7
8
(22) Coulston, G. W.; Bare, S. R.; Kung, H.; Birkeland, K.; Bethke, G. K.;
Harlow, R.; Herron, N.; Lee, P. L. The Kinetic Significance of V5+ in n-
Butane Oxidation Catalyzed by Vanadium Phosphates. Science 1997, 275,
191-193.
(23) Hutchings, G. J.; Desmartin-Chomel, A.; Olier, R.; Volta, J.-C. Role
of the product in the transformation of a catalyst to its active state. Nature
1994, 368, 41.
(24) Lashier, M. E.; Schrader, G. L. Reactive lattice oxygen sites for C4
hydrocarbon selective oxidation over β-VOPO4. J. Catal. 1991, 128, 113-
125.
(25) Gopal, R.; Calvo, C. Crystal structure of β VPO5. J. Solid State Chem.
1972, 5, 432-435.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) Willinger, M. G.; Su, D. S.; Schlögl, R. Electronic structure of β-
VOPO4. Phys. Rev. B 2005, 71, 155118.
(27) Eichelbaum, M.; Hävecker, M.; Heine, C.; Karpov, A.; Dobner, C.-K.;
Rosowski, F.; Trunschke, A.; Schlögl, R. The Intimate Relationship
between Bulk Electronic Conductivity and Selectivity in the Catalytic
Oxidation of n-Butane. Angew. Chem. Int. Ed. 2012, 51, 6246-6250.
(28) Wu, C.; Lu, X.; Peng, L.; Xu, K.; Peng, X.; Huang, J.; Yu, G.; Xie, Y.
Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy
density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.
(29) Zhang, J.; Zhang, Y.; Zhang, X.; Ling, Y.; Li, F.; Bond, A. Controllable
synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation
for enhanced CO2 reduction performance. Angew. Chem. Int. Ed. 2018, 57,
13283-13287.
(30) Beerthuis, R.; Rothenberg, G.; Shiju, N. R. Catalytic routes towards
acrylic acid, adipic acid and ε-caprolactam starting from biorenewables.
Green Chem. 2015, 17, 1341-1361.
(31) Xu, P.; Qiu, J.; Gao, C.; Ma, C. Biotechnological routes to pyruvate
production. J. Biosci. Bioeng. 2008, 105, 169-175.
(32) Sugiyama, S.; Kikumoto, T.; Tanaka, H.; Nakagawa, K.; Sotowa, K.-
I.; Maehara, K.; Himeno, Y.; Ninomiya, W. Enhancement of Catalytic
Activity on Pd/C and Te–Pd/C During the Oxidative Dehydrogenation of
Sodium Lactate to Pyruvate in an Aqueous Phase Under Pressurized
Oxygen. Catal. Lett. 2009, 131, 129-134.
(33) Zhang, W.; Innocenti, G.; Ferbinteanu, M.; Ramos Fernandez, E. V.;
Sepulveda-Escribano, A.; Wu, H.-H.; Cavani, F.; Rothenberg, G.; Shiju, R.
N. Understanding the oxidative dehydrogenation of ethyl lactate to ethyl
pyruvate over vanadia/titania catalysts. Catal. Sci. Technol. 2018, 8, 3737-
3747.
(34) Zhang, W.; Ensing, B.; Rothenberg, G.; Shiju, R. N. Designing
effective solid catalysts for biomass conversion: Aerobic oxidation of ethyl
lactate to ethyl pyruvate. Green Chem. 2018, 20, 1866-1873.
(35) Zhang, W.; Oulego, P.; Slot, T. K.; Rothenberg, G.; Shiju, N. R.
Selective Aerobic Oxidation of Lactate to Pyruvate Catalyzed by Vanadium
‐Nitrogen ‐Doped Carbon Nanosheets. ChemCatChem 2019, 11, 3381-
3387.
(36) Zhang, W.; Innocenti, G.; Oulego, P.; Gitis, V.; Wu, H.-H.; Ensing, B.;
Cavani, F.; Rothenberg, G.; Shiju, N. R. Highly selective oxidation of ethyl
lactate to ethyl pyruvate catalysed by mesoporous vanadia–titania. ACS
Catal. 2018, 8, 2365-2374.
(37) Majjane, A.; Chahine, A.; Et-tabirou, M.; Echchahed, B.; Do, T.-O.;
Breen, P. M. X-ray photoelectron spectroscopy (XPS) and FTIR studies of
vanadium barium phosphate glasses. Mater. Chem. Phys. 2014, 143, 779-
787.
(38) Benabdelouahab, G. F.; Volta, J. C.; Olier, R. New Insights into
VOPO4 Phases Through Their Hydration. J. Catal. 1994, 148, 334-340.
(39) Zhang, Y.; Li, X.; Ko, J. Highly Efficient Gas Phase Oxidation of
Renewable Furfural to Maleic Anhydride over Plate VPO Catalyst.
ChemSusChem 2018, 11, 612-618.
(40) Wang, F.; Dubois, J.-L.; Ueda, W. Catalytic dehydration of glycerol
over vanadium phosphate oxides in the presence of molecular oxygen. J.
Catal. 2009, 268, 260-267.
(41) Samotus, B.; Schwimmer, S. Phytic Acid as a Phosphorus Reservoir in
the Developing Potato Tuber. Nature 1962, 194, 578.
ACS Paragon Plus Environment