5550 J. Phys. Chem. A, Vol. 102, No. 28, 1998
Bossmann et al.
S.; Mailhot, G.; Bolte, M. Solar Energy Mater. Solar Cells 1995, 38, 459-
474. (d) Safarzadeh-Amiri, A.; Bolton, J. R.; Cater, S. R. Solar Energy
1996, 56, 439-444. (e) Bandara, J.; Morrison, C.; Kiwi, J.; Pulgarin, C.;
Peringer, P. J. Photochem. Photobiol. A: Chem. 1996, 99, 57-66. (f)
Pignatello, J. J.; Chapa, G. EnViron. Toxicol. Chem. 1994, 13, 423-427.
(g) Pignatello, J. J. EnViron. Sci. Technol. 1992, 26, 944-951. (h) Sun, Y.;
Pignatello, J. J. Agric. Food Chem. 1993, 41, 1139-1142. (i) Safarzadeh-
Amiri, A.; Bolton, J. R.; Cater, S. R. J. AdV. Oxid. Technol. 1996, 1, 18-
26.
(6) (a) Oliveros, E.; Legrini, O.; Braun, A. M.; Hohl, M.; Mu¨ller, T.
Water Sci. Technol. 1997, 35, 223-230. (b) Oliveros, E.; Legrini, O.; Hohl,
M.; Mu¨ller, T.; Braun, A. M. Chem. Eng. Proc. 1997, 36, 397-405.
(7) (a) Haber, F.; Weiss, J. J. Proc. R. Soc. London, Ser. A 1934, 147,
332-345. (b) Merz, J. H.; Waters, W. A. Discuss. Faraday Soc. 1949, 2,
179-182.
TABLE 5: Summary of the Observed Reaction Behavior
reactive
reactive
electronic
intermediate of
intermediate of
reacn system confign of the thermal reacn the photochem reacn
(aq solutn)
iron(II/III)
(T ) 295 K)
(λirr ) 200-550 nm)
Fe2+
+
high-spin
(t2g)4(eg)2
high-spin
(t2g)5(eg)0
Fe4+
aq
aq
H2O2
Fe3+
HO•
aq
photolysis yields free hydroxyl radicals, a controversy about
the reactive intermediates of the thermal and the photochemi-
cally enhanced Fenton reactions still prevails. The comparison
of the reaction products of 2,4-xylidine clearly demonstrates
that H2O2 photolysis on one hand and both Fenton reactions on
the other hand involve different reactive intermediates. Whereas
hydroxylated aromatic amines are formed during H2O2 pho-
tolysis, 2,4-dimethylphenol is the most important intermediate
in both Fenton reactions. 2,4-Dimethylphenol can be formed
by an electron-transfer mechanism. Therefore, we conclude that
during the thermal reaction of Fe2+aq with H2O2 a cationic iron
intermediate possessing an unusual charge, most likely the ferryl
ion (Fe4+aq), is formed. However, the experiments described
(8) (a) Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R.
Trans Faraday Soc. 1951, 47, 462-500. (b) Barb, W. G.; Baxendale, J.
H.; George, P.; Hargrave, K. R. Trans. Faraday Soc. 1951, 47, 591-616.
(9) (a) Goldstein, S.; Czapski, G.; Meyerstein, D. Free Radicals Biol.
Med. 1993, 15, 435-445. (b) Marsarwa, M.; Cohen, H.; Meyerstein, D.;
Hickman, D. L.; Bakac, A.; Espensen, J. H. J. Am. Chem. Soc. 1988, 110,
4293-4297.
(10) Cotton, F. A.; Wilkinson, G. AdVanced Inorganic Chemistry; Verlag
Chemie: Weinheim, Germany, 1980; pp 461-488.
(11) Wink, D. A.; Nims, R. W.; Saavedra, J. E.; Utermahlen, W. E.;
Ford, P. C. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6604-6608.
(12) Rush, J. D.; Bielski, H. J. J. Am. Chem. Soc. 1986, 108, 523-525.
(13) Kremer, M. L.; Stein, G. Trans. Faraday Soc. 1959, 55, 595-560.
(14) Luzzatto, E.; Cohen, H.; Stockheim, C.; Wieghardt, K.; Meyerstein,
D. Free Radical Res. 1995, 23, 453-463.
here cannot distinguish between Fe4+ and a hydroxyl radical
aq
(15) Sychev, A. Y.; Isaak, V. G. Russ. Chem. ReV. 1995, 64, 1105-
1129.
(16) Sun, Y.; Pignatello, J. J. EnViron. Sci. Technol. 1993, 27, 304-
310.
(17) Wiberg, N.; Wiberg, E.; Hollemann, A. F. Lehrbuch der Anorga-
nischen Chemie; Walter de Gruyter: Berlin, New York, 1985; pp 1136-
1139.
(18) Koppenol, W. H.; Liebman, J. F. J. Phys. Chem. 1984, 88, 99-
101.
(19) (a) Sonntag, C. v.; Schuchmann, H.-P. Angew. Chem. 1991, 103,
1255-79. (b) Turro, N. J. Modern Molecular Photochemistry; University
Science Books: Mill Valley, CA, 1991.
(20) (a) Sawyer, D. T.; Kang, C.; Llobet, A.; Redman, C. J. Am. Chem.
Soc. 1993, 115, 5, 5817-5818. (b) Hage, J. P.; Llobet, A.; Sawyer, D. T.
Bioorg. Med. Chem. 1995, 3, 1383-1388.
(21) (a) Balzani, V. C.; Carassiti, V. Photochemistry of Coordination
Compounds; Academic Press: New York, 1970. (b) Hennig, H.; Rehorek,
D. Photochemische und Photokatalytische Reaktionen Von Koordinations-
Verbindungen; Akademie Verlag: Berlin, 1987.
(22) Walling, C.; Goosen, A. J. Am. Chem. Soc. 1973, 95, 2987-2991.
(23) (a) Langford, C. H.; Carey, J. H. Can. J. Chem. 1975, 53, 2430-
2435. (b) Faust, B. C.; Hoigne, J. J. Atm. EnViron. 1990, 24, 79-89. (c)
Zuo, Y.; Hoigne´, J. EnViron. Sci. Technol. 1992, 26, 1014-1022.
(24) Dobereiner, J. Schw. J. 1833, 62, 90-92.
(25) Jander, G.; Blasius, E. Einfu¨hrung in das anorganisch-chemische
Praktikum; Hirzel: Stuttgart, Germany, 1984.
(26) Braun, A. M.; Maurette, M.-T.; Oliveros, E. Photochemical
Technology; Wiley & Sons: New York, Chichester, U.K., 1991; pp 76-
80 and references therein.
complexed by Fe3+aq. The latter species would possess exactly
the same reactivity as Fe4+
.
aq
In contrast to the thermal Fenton reaction, evidence for the
formation of the hydroxyl radical during the photolysis of Fe3+
aq
at pH 3.0 exists. This reaction pathway, which shows a quantum
yield of 0.21, is suppressed in the presence of most organic
compounds dissolved in water, because the quantum yields for
the photooxidation of iron(III)-coordinated organic ligands are
usually significantly higher. In this work, quantum yields for
the oxidation of 2,4-xylidine (Φ ) 0.92) and H2O2 (Φ ) 1.33)
by electronically excited iron(III) have been measured for the
first time. The observed reaction behavior is summarized in
Table 5.
Acknowledgment. Financial support from Hewlett-Packard
is gratefully acknowledged. L.P. Jr. thanks the United Nations
for a grant supporting his Ph.D. thesis. A part of this research
has also been funded by BMBF.
References and Notes
(1) (a) Legrini, O.; Oliveros, E.; Braun, A. M. Chem. ReV. 1993, 93,
671-698 and references therein. (b) Ollis, D. F.; Al-Ekabi, H., Eds.
Photocatalytic Purification and Treatment of Water and Air; Elsevier:
Amsterdam, 1993.
(2) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J.
Phys. Chem. Ref. Data 1988, 17, 513-886.
(3) (a) Fenton, H. J. H. J. Chem. Soc. 1894, 65, 899-901. (b) Fenton,
H. J. H. J. Chem. Soc., Trans. 1899, 75, 1-11. (c) Walling, C. Acc. Chem.
Res. 1975, 8, 125-131.
(27) (a) Christen, H. R. Grundlagen der Organischen Chemie; Otto Salle
Verlag: Frankfurt/Main, Germany, 1982. (b) Gontier, S.; Tuel, A. J. Catal.
1995, 157, 124-132. (c) Tonti, S.; Roffia, P.; Cesana, A.; Mantegazza,
M.; Padovan, M. Eur. Pat. 1988, 314, 147-155. (d) Sakaue, S.; Tsubakino,
T.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1993, 58, 3633-3642. (e)
Werkert, E.; Angeli, E. Synth. Commun. 1988, 18, 1331-1339. (f) Tollari,
S.; Vergani, D.; Banfi, S.; Porta, F. J. Chem. Soc., Chem. Commun. 1993,
442-451. (g) Donten, M.; Hyk, W.; Ciszkowska, M.; Stojek, Z. Elec-
troanalysis (Weinheim) 1997, 9, 751-754. (h) Hoon, M.; Fawcett, R. W.
J. Phys. Chem. A 1997, 101, 3726-3730. (i) Spitsyn, M. A.; Andreev, V.
N.; Kazarinov, V. E. Russ. J. Electrochem. 1995, 31, 1092-1097. (k) Wang,
L.; Goodloe, G. W.; Stallman, B. J.; Cammarata, V. Chem. Mater. 1996,
8, 1175-1181.
(4) (a) Cahill, A. E.; Taube, H. J. Am. Chem. Soc. 1952, 74, 2312-
2316. (b) Eisenhauer, H. R. J. WPCF 1964, 36, 1116-1128. (c) Bishop,
D. F.; Stern, G.; Fleischman, M.; Marshall, L. S. Ind. Eng. Chem. Proc.
Design DeV. 1968, 7, 110-117. (d) Pasek, E. A.; Straub, D. K. Inorg. Chem.
1972, 11, 259-266. (e) Feuerstein, W.; Gilbert, E.; Eberle, S. H. Vom
Wasser 1981, 56, 35-54. (f) Barbeni, M.; Minero, C.; Pelizzetti, E.;
Bogarello, E.; Serpone, N. Chemosphere 1987, 6, 2225-2237. (g) Sedlak,
D. L.; Andren, A. W. EnViron. Sci. Technol. 1991, 25, 777-782. (h)
Lipczynska-Kochany, E. Chemosphere 1991, 22, 529-536.
(28) The value of E ≈ 2.43 V was estimated using Fe3+aq (E ≈ 0.66 V
at pH 3.0) and E0-0 ) 1.77 V, corresponding to λ0-0 (Fe3+*aq) ) 700 nm
at pH 3.0.
(29) Maillard, C.; Guillard, C.; Pichat, P. Chemosphere 1992, 24, 1085-
1094 and references therein.
(5) (a) Goldstein, S.; Czapski, G.; Meyerstein, D. Free Radicals Biol.
Med. 1993, 15, 435-445. (b) Ruppert, G.; Bauer, R.; Heisler, G. J.
Photochem. Photobiol. A: Chem. 1993, 73, 75-78. (c) Andrianirinaharivelo,
(30) Cotton, F. A. Coord. Chem. ReV. 1972, 8, 185-227.