64
V. TEGGINAMATH ET AL.
in Table 4. A comparison of the latter values with those
obtained for the slow step of the reaction shows that these
values mainly refer to the rate limiting step, supporting
the fact that the reaction before the rate determining step
is fairly slow and involves a high activation energy.27 In
the same manner, K2 and K4 values were calculated at
different temperatures and the corresponding values of
thermodynamic quantities are given in Table 4.
Negligible effect of ionic strength and dielectric
constant in both uncatalysed and catalysed reaction
might be due to involvement of neutral substrate in the
reaction (Schemes 1 and 2). The negative value of DS#
suggests that the intermediate complex is more ordered
than the reactants.28 The observed higher rate constant for
the slow step indicate that the oxidation presumably
occurs via an inner-sphere mechanism. This conclusion is
supported by earlier observation.31 The activation
parameters evaluated for the catalysed and uncatalysed
reaction explain the catalytic effect on the reaction. The
catalyst, Ru(III) form the complex (C) with substrate
which enhances the reducing property of the substrate
than that without catalyst, Ru(III). Further the catalyst
Ru(III) modifies the reaction path by lowering the energy
of activation.
7. (a) Jaiswal PK, Yadav KL. Talanta 1970; 17: 236; (b) Jaiswal PK,
Analyst 1972; 1: 503.
8. (a) Jayaprakash Rao P, Sethuram B, Navaneeth Rao T. React.
Kinet. Catal. 1985; 29: 289; (b) Venkata Krishna K, Jayaprakash
Rao. P. Indian J. Chem. 1998; 37: 1106. references therein.
9. (a) Kumar A, Kumar P, Ramamurthy P. Polyhedron 1999; 18: 773;
(b) Kumar A, Kumar P. J. Phys. Org. Chem. 1999; 12: 79;
(c) Kumar A, Vaishali P. Ramamurthy P. Int. J. Chem. Kinet.
2000; 32: 286.
10. Das AK. Coord. Chem. Revs. 2001; 213: 307.
11. (a) Kamble DL, Nandibewoor ST. J. Phys. Org. Chem. 1998; 11:
171; (b) Hiremath GA, Timmanagoudar PL, Nandibewoor ST.
React. Kinet. Catal. Lett 1998; 63: 403; (c) Kamble DL, Nandi-
bewoor ST. Oxid. Commun. 1998; 21: 396.
12. (a) Tuwar SM, Morab VA, Nandibewoor ST, Raju JR. Transition
Met. Chem. 1991; 16: 430; (b) Desai SM, Halligudi NN, Nandi-
bewoor ST. Int. J. Chem. Kinet. 1999; 31: 583.
13. Mahadevappa DS, Naidu HMK. Talanta 1973; 20: 349.
14. (a) Reddy CS, Vijaykumar T. Indian J. Chem. 1995; 34A: 615;
(b) Kamble DL, Chougale RB, Nandibewoor ST. Indian J. Chem.
1996; 35A: 865.
15. Panigrahi GP, Misro PK. Indian J. Chem. 1977; 15: 1066.
16. Cohen GL, Atkinson G. Inorg. Chem. 1964; 3: 1741.
17. Jeffery GH, Bassett J, Mendham J, Denney RC. Vogel’s Textbook
of Quantitative Chemical Analysis, (5th edn). Longmans
Singapore Publishers Pvt Ltd: Singapore, 1996; 467. and 391.
18. Feigl F. Spot Tests in Organic Analysis. Elsevier: New York, 1975;
58.
19. Moelwyn-Hughes EA. Kinetics of Reaction in Solutions. Oxford
University Press: London, 1947; 297.
20. Krishenbaum LJ, Mrozowski L. Inorg. Chem. 1978; 17: 3718.
21. (a) Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. John
Wiley and sons: New York, 1980; 974; (b) Banerjee R, Das K, Das
A, Dasgupta S. Inorg. Chem. 1989; 28: 585; (c) Banerjee R, Das R,
Mukhopadhyay S. J. Chem. Soc. Dalton Trans. 1992; 1317.
22. (a) Crouthumel CE, Meek HV, Martin DS, Banus CV. J. Am. Chem.
Soc. 1949; 71: 3031; (b) Crouthamel CE, Hayes AM, Martin DS.
J. Am. Chem. Soc. 1951; 73: 82.
23. Sethuram B. Some Aspects of Electron Transfer Reactions Invol-
ving Organic Molecules. Allied Publishers (P) Ltd.: New Delhi,
2003; 78.
24. (a) Bhattacharya S, Saha B, Datta A, Banerjee P. Coord. Chem.
Rev. 1988; 47: 170; (b) Haines RI, McAuley A. Coord. Chem. Rev.
1981; 39: 77
25. (a) Timmegowda B, Ishwarabhat J. Indian J. Chem. 1989; 28: 43;
(b) Bellakki MB, Mahesh RT, Nandibewoor ST. Inorg. React.
Mech. 2005; 6: 1.
26. Seregar VC, Hiremath CV, Nandibewoor ST. Z. Phys. Chem. 2006;
220: 615.
27. (a) Rangappa KS, Raghavendra MP, Mahadevappa DS, Channe-
gouda D. J. Org. Chem. 1998; 63: 531; (b) Bilehal DC, Kulkarni
RM, Nandibewoor ST. Can. J. Chem. 2001; 79: 1926.
28. Weissberger A. In Investigation of Rates and Mechanism of
Reactions in Techniques of Chemistry, Vol. 4 , Lewis ES (ed).
Wiley: New York, 1974; 421.
29. (a) Singh HS, Singh RK, Singh SM, Sisodia AK. J. Phys. Chem.
1977; 81: 1044; (b) Cotton FA, Wilkinson G. Advanced Inorganic
Chemistry. Wiley Eastern: New York, 1996; 153.
CONCLUSION
The comparative study of uncatalysed and ruthenium(III)
catalysed oxidation of AA by diperiodatoargentate(III)
was studied. Oxidation products were identified. Among
the various species of Ag(III) in alkaline medium, MPA is
considered to be the active species for the title reaction.
Active species of Ru(III) is found to be [Ru(H2O)5OH]2þ
.
Activation parameters were evaluated for both uncata-
lysed and catalysed reactions with respect to slow step of
reaction schemes. Catalytic constants and activation
parameters with respect to catalyst were also computed.
REFERENCES
1. Bhat K, Naidu KC. Z. Phys. Chem. (Leipzig) 1983; 264: 1195.
2. Hiremath GA, Timmanagoudar PL, Nandibewoor ST. J. Phys. Org.
Chem. 1998; 11: 31.
3. Chougale RB, Kamble DL, Nandibewoor ST. Pol. J. Chem. 1997;
71: 986.
4. Nandibewoor ST, Raju JR. J. Indian Chem. Soc. 1978; 55: 1284.
5. Tuwar SM, Nandibewoor ST, Raju JR. J. Indian Chem. Soc. 1992;
69: 651.
6. Sethuram B. Some Aspects of Electron Transfer Reactions Involving
Organic Molecules. Allied Publishers (P) Ltd: New Delhi, 2003; 151.
30. (a) Shetter RS, Nandibewoor ST. J. Mol. Cat. A 2005; 234: 137;
(b) Kiran TS, Hiremath CV, Nandibewoor ST. Appl. Cat. A. 2006;
305: 79.
31. (a) Martinez M, Pitarque MA, Eldik RV. J. Chem. Soc. Dalton
Trans. 1996; 2665; (b) Farokhi SA, Nandibewoor ST. Tetrahedron
2003; 59: 7595.
Copyright # 2007 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2007; 20: 55–64
DOI: 10.1002/poc