Full Papers
[6] A. Comite, A. Sorrentino, G. Capannelli, M. Di Serio, R. Tesser, E. Santace-
[8] J. Keränen, P. Carniti, A. Gervasini, E. Iiskola, A. Auroux, L. Niinistç, Catal.
eters and 12 parameters were used at most to describe different
paths. Determination of the energy level (E0) was performed at the
first inflection point of the edge. For each atomic shell, the follow-
ing structural parameters were adjusted: coordination number (N),
bond length (R), and the so-called Debye–Waller factor through
the mean-square relative displacement (s2) of the considered bond
2
length. The amplitude factor (S0 ) was fitted to the EXAFS spectrum
obtained for V(=O)(OiPr)3. To do so,
a molecular model of
Lefort, M. Chabanas, O. Maury, D. Meunier, C. CopØret, J. Thivolle-Cazat,
[11] a) H. Berndt, A. Martin, A. Brückner, E. Schreier, D. Müller, H. Kosslick,
Blasco, J. M. López Nieto, M. L. PeÇa, F. Rey, A. Vidal-Moya, J. Catal.
[13] a) W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E.
Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011,
V(=O)(OiPr)3 was built and optimized at the UFF[23] level with the
Avogadro molecular builder and visualization tool.[24] Then the ge-
ometry of the whole structure was fully optimized at the DFT level
from Gaussian09[25] code using the MO6[26] functional and TZVP[27]
basis set for all the atoms except for the vanadium atom to which
we described the electronic structure of s and p core electrons
from the Stuttgart/Dresden[28] effective core potential. The resulting
atomic coordinates were used as an input to calculate the theoreti-
cal phases, amplitudes and electron free mean path with the
FEFF6 code[29] implemented in IFEFFIT programs suite. S0 for
V(ÀO)(OiPr)3 was then found equal to 0.87.
2
104207; b) D. Cabaret, A. Bordage, A. Juhin, M. Arfaoui, E. Gaudry, Phys.
[19] A. L. Hector, W. Levason, A. J. Middleton, G. Reid, M. Webster, Eur. J.
[20] a) B. Frank, M. Morassutto, R. Schomäcker, R. Schlçgl, D. S. Su, Chem-
Oliva, F. Cavani, A. Cericola, B. Bonelli, M. Piumetti, E. Garrone, H. Dyr-
[21] A. Dinse, S. Khennache, B. Frank, C. Hess, R. Herbert, S. Wrabetz, R.
[23] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am.
[24] M. Hanwell, D. Curtis, D. Lonie, T. Vandermeersch, E. Zurek, G. Hutchi-
Catalytic tests
Catalytic propane ODH was performed on a micropilot (from PID
Eng&Tech) equipped with a quartz glass reactor at atmospheric
pressure. The catalyst powder (25 mg) was placed in the reactor
supported by quartz glass wool. The effect of temperature on the
activity and selectivity was measured from 500 to 6008C, and the
gas feed composed of 10% C3H8 and 10% O2 in He was introduced
through the catalytic bed at a total flow rate of 30 mL/minute. The
propane conversion versus propylene selectivity was determined
at 5508C, and the total flow rate (10% C3H8 and 10% O2) was
changed from 10 mL/min to 60 mL/min. The stability test was eval-
uated at 5808C with total flow rate of 10 mL/min (10% C3H8 and
10% O2). The reaction products were analyzed with on-line Varian
490 micro-GC equipped with a TCD detector and four columns:
a MolSieve 5 column to quantify O2 and CO, a poraPLOT Q
column to quantify CO2, C2H4 as well as C2H6, an alumina column
to quantify C3H8 as well as C3H6. Propane conversion and selectivity
to propylene were calculated on a carbon basis. Carbon mass bal-
ance was superior to 98% in all cases.
[25] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men-
nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko-
bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen-
gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio-
slowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
Keywords: alkanes · alkenes · dehydrogenation · silicates ·
vanadium
[1] a) M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai, P. R. Pujadó, Appl. Catal.
195–206; b) Q. Shao, P. Wang, H. Tian, R. Yao, Y. Sun, J. Long, Catal.
Kolen’ko, W. Zhang, R. N. d’Alnoncourt, F. Girgsdies, T. W. Hansen, T.
c) X. Sun, R. Wang, B. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C.
452–476; e) K. Chalupka, C. Thomas, Y. Millot, F. Averseng, S. Dzwigaj, J.
[27] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
[28] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim.
[29] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B
[4] a) C. A. Carrero, R. Schloegl, I. E. Wachs, R. Schomaecker, ACS Catal.
199–268; c) H. H. Kung, Adv. Catal. 1994, 40, 1–38.
[5] a) Y.-M. Liu, Y. Cao, N. Yi, W.-L. Feng, W.-L. Dai, S.-R. Yan, H.-Y. He, K.-N.
Received: May 30, 2015
Published online on September 7, 2015
ChemCatChem 2015, 7, 3332 – 3339
3339
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim