Paper
RSC Advances
indicating that the treatment with fumed HCl restores catalytic
performance.
Delgass, J. Catal., 2013, 308, 98–113; X. Feng, X. Duan,
G. Qian, X. Zhou, D. Chen and W. Yuan, Appl. Catal., B,
2014, 150–151, 396–401; X. Feng, X. Duan, J. Yang, G. Qian,
X. Zhou, D. Chen and W. Yuan, Chem. Eng. J., 2015, 278,
234–239; M. Du, J. Huang, D. Sun and Q. Li, Appl. Surf.
Sci., 2016, 366, 292–298; F. Jin, Y. Wu, S. Liu, T.-H. Lin,
J.-F. Lee and S. Cheng, Catal. Today, 2016, 264, 98–108.
6 K. Murata, Y. Liu, M. Inaba and N. Mimura, Catal. Today,
2004, 91–92, 39–42; N. Mimura, S. Tsubota, K. Murata,
K. K. Bando, J. J. Bravo-Suarez, M. Haruta and S. T. Oyama,
Catal. Lett., 2006, 110, 47–51; F. Sun and S. Zhong, J. Nat.
Gas Chem., 2006, 15, 45–51; S. Park, K. M. Cho,
M. H. Youn, J. G. Seo, J. C. Jung, S.-H. Baeck, T. J. Kim,
Y.-M. Chung, S.-H. Oh and I. K. Song, Catal. Commun.,
2008, 9, 2485–2488; W.-S. Lee, M. Cem Akatay, E. A. Stach,
F. H. Ribeiro and W. Nicholas Delgass, J. Catal., 2012, 287,
178–189.
Conclusion
Catalysts based on RuO2–CuO/SiO2 were modied with Cs2O
and TiO2 for the direct gas-phase epoxidation of propylene to
PO using only O2 under atmospheric pressure. Catalytic
performance was rst optimized by varying the weight
percentage of Cs2O in the RuO2–CuO/SiO2 catalyst and by
varying the weight percentage of TiO2 added to the best of those
RuO2–CuO–Cs2O/SiO2 catalysts. The multi-metallic catalyst
performed best at weight ratios of Ru/Cu/Cs/Ti ¼ 8.3/4.2/0.6/0.8
at a total metal loading of 21 wt%. Further optimization of the
PO formation rate was pursued using the Box–Behnken design
of experiments, varying the reaction temperature, O2/C3H6
volume ratio, (O2 + C3H6)/He volume ratio, and total feed gas
ow rate simultaneously. The highest PO formation rate and PO
selectivity over the RuO2–Cꢀu1O–Cs2O–TiO2 catalyst were ach-
ieved at 3015 gPO hꢀ1 kgcat and 38.4%, respectively, repre-
senting the highest PO formation rate ever reported for the title
reaction. The characterizations of the optimal catalyst using
XRD, XPS, NH3-TPD, CO2-TPD, SEM, and H2-TPR technique
revealed that the main active site for PO formation was the close
proximity between crystalline RuO2 and CuO where the synergy
effect takes place. Cs2O and TiO2 acted as promoters by
modulating the acidity or the basicity of RuO2–CuO/SiO2
surfaces. The catalyst exhibited a deactivation due to the loss of
Cl. However, it can be recovered by treating with fumed HCl.
7 S. Kalyoncu, D. Duzenli, I. Onal, A. Seubsai, D. Noon,
S. Senkan, Z. Say, E. Vovk and E. Ozensoy, Catal. Lett.,
2015, 145, 596–605.
8 E. Ananieva and A. Reitzmann, Chem. Eng. Sci., 2004, 59,
5509–5517; Q. Zhang, Q. Guo, X. Wang, T. Shishido and
Y. Wang, J. Catal., 2006, 239, 105–116; S. Yang, W. Zhu,
Q. Zhang and Y. Wang, J. Catal., 2008, 254, 251–262;
Z. X. Song, N. Mimura, S. Tsubota, T. Fujitani and
S. T. Oyama, Catal. Lett., 2008, 121, 33–38; J. Q. Lu,
X. M. Zhang, J. J. Bravo-Suarez, T. Fujitani and
S. T. Oyama, Catal. Today, 2009, 147, 186–195; V. I. Sobolev
and K. Y. Koltunov, Appl. Catal., A, 2014, 476, 197–203.
9 E. A. Carter and W. A. Goddard, J. Catal., 1988, 112, 80–92.
10 R. M. Lambert, F. J. Williams, R. L. Cropley and A. Palermo, J.
Mol. Catal. A: Chem., 2005, 228, 27–33.
Acknowledgements
This research is supported in part by the Graduate Program 11 L. J. Yang, J. L. He, Q. H. Zhang and Y. Wang, J. Catal., 2010,
Scholarship from Graduate School, Kasetsart University; the
276, 76–84.
Kasetsart University Research and Development Institute 12 D. Torres, N. Lopez, F. Illas and R. M. Lambert, Angew.
(KURDI), the Thailand Research Fund (TRF) and the Commis- Chem., Int. Ed., 2007, 46, 2055–2058.
sion on Higher Education (MRG5980240). T. Chukeaw 13 X. Zheng, Q. Zhang, Y. Guo, W. Zhan, Y. Guo, Y. Wang and
acknowledges the Graduate School, Kasetsart University for G. Lu, J. Mol. Catal. A: Chem., 2012, 357, 106–111.
scholarship. B. Zohour and D. Noon acknowledge Chemical and 14 A. Seubsai, M. Kahn and S. Senkan, ChemCatChem, 2011, 3,
Biomolecular Engineering Department at University of Cal-
174–179.
ifornia Los Angeles (UCLA) for nancial support.
15 A. Seubsai and S. Senkan, ChemCatChem, 2011, 3, 1751–
1754.
16 A. Miller, B. Zohour, A. Seubsai, D. Noon and S. Senkan, Ind.
Eng. Chem. Res., 2013, 52, 9551–9555.
References
1 T. A. Nijhuis, M. Makkee, J. A. Moulijn and 17 A. Seubsai, D. Noon, T. Chukeaw, B. Zohour, W. Donphai,
B. M. Weckhuysen, Ind. Eng. Chem. Res., 2006, 45, 3447–3459.
M. Chareonpanich and S. Senkan, J. Ind. Eng. Chem., 2015,
32, 292–297.
´
2 A. Prieto, M. Palomino, U. Dıaz and A. Corma, Catal. Today,
2014, 227, 87–95.
3 K. L. Ring and M. deGuzman, Chemical Economics Handbook:
Propylene Oxide, IHS Chemical, 2016.
4 S. J. Khatib and S. T. Oyama, Catal. Rev., 2015, 57, 306–344.
5 J. Gaudet, K. K. Bando, Z. Song, T. Fujitani, W. Zhang,
D. S. Su and S. T. Oyama, J. Catal., 2011, 280, 40–49;
18 J. He, Q. Zhai, Q. Zhang, W. Deng and Y. Wang, J. Catal.,
2013, 299, 53–66.
19 X. Yang, S. Kattel, K. Xiong, K. Mudiyanselage, S. Rykov,
S. D. Senanayake, J. A. Rodriguez, P. Liu, D. J. Stacchiola
and J. G. Chen, Angew. Chem., Int. Ed., 2015, 54, 11946–
11951.
J. Chen, S. J. A. Halin, E. A. Pidko, M. W. G. M. Verhoeven, 20 J. Lu, M. Luo, H. Lei and C. Li, Appl. Catal., A, 2002, 237, 11–
D. M. P. Ferrandez, E. J. M. Hensen, J. C. Schouten and 19.
T. A. Nijhuis, ChemCatChem, 2013, 5, 467–478; W. S. Lee, 21 M. F. Luo, J. Q. Lu and C. Li, Catal. Lett., 2003, 86, 43–49;
M. Cem Akatay, E. A. Stach, F. H. Ribeiro and W. Nicholas
O. P. H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov and
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 56116–56126 | 56125