Dehydration of Glycerin Over H3PW12O40/TiO2
Kang et al.
of glycerin with Lewis acid sites can be affected by steric
constraints due to the electronic structure of Lewis acid
sites. For this reason, terminal oxygen of glycerin is
more likely to interact with Lewis acid sites. As a result,
hydroxyacetone is mainly produced on the Lewis acid
sites via primary carbocation. Among the catalysts tested,
20H3PW12O40/MT catalyst with largest Brønsted acidity
showed the highest yield for acrolein. Thus, Brønsted
acidity of the catalysts played an important role in the
catalytic dehydration of glycerin to acrolein.
3. E. Garcia, M. Laca, E. Perez, A. Garrido, and J. Peinado, Energy
Fuels 22, 4274 (2008).
4. A. M. Ruppert, J. D. Meeldijk, B. W. M. Kuipers, B. H. Erné, and
B. M. Weckhyusen, Chem. Eur. J. 14, 2016 (2008).
5. J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel, and
C. Rosier, Green Chem. 6, 359 (2004).
6. G. P. da Silva, M. Mack, and J. Contiero, Biotechnol. Adv. 27, 30
(2009).
7. L. Liu, X. P. Ye, and J. J. Bozell, ChemSusChem. 5, 1162
(2012).
8. B. Katryniok, S. Paul, M. Capron, and F. Dumeignil, ChemSusChem.
2, 719 (2009).
9. E. H. Xie, Q. L. Zhang, and K. T. Chuang, Appl. Catal. A: Gen.
220, 215 (2001).
10. C.-J. Jia, Y. Liu, W. Schmidt, A.-H. Lu, and F. Schu˝th, J. Catal.
269, 71 (2010).
11. S.-H. Chai, H.-P. Wang, Y. Liang, and B.-Q. Xu, J. Catal. 250, 342
(2007).
12. A. Ulgen and W. Hoelderich, Catal. Lett. 131, 122 (2009).
13. I. V. Kozhevnikov, Chem. Rev. 98, 171 (1998).
14. T. Okuhara, N. Mizuno, and M. Misono, Adv. Catal. 41, 113
(1996).
15. P. M. Sreekanth and P. G. Smirniotis, Catal. Lett. 122, 37
(2008).
16. J. Hong, W. Chu, M. Chen, X. Wang, and T. Zhang, Catal. Commun.
8, 593 (2007).
17. J.-Y. Zheng, J.-B. Pang, K.-Y. Qiu, and Y. Wei, Micropor. Mesopor.
Mater. 49, 189 (2001).
18. K. M. Reddy, C. V. G. Reddy, and S. V. Manorama, J. Solid State
Chem. 158, 180 (2001).
4. CONCLUSIONS
Gas-phase dehydration of glycerin to acrolein was carried
out over H3PW12O40 catalysts supported on mesoporous
titania (XH3PW12O40/MT) with different H3PW12O40 con-
tent (X, wt%). Yield for acrolein over XH3PW12O40/MT
catalysts showed a volcano-shaped trend with respect
to H3PW12O40 content. Brønsted acidity of the cata-
lysts determined from pyridine-adsorbed in-situ FT-IR
spectroscopy also exhibited a volcano-shaped trend with
respect to H3PW12O40 content. It was revealed that
the catalytic performance of XH3PW12O40/MT (X =
5ꢀ10ꢀ15ꢀ20ꢀ25ꢀ and 30) catalysts in the dehydration of
glycerin was closely related to the Brønsted acidity of the
catalysts. Yield for acrolein over XH3PW12O40/MT (X =
5ꢀ10ꢀ15ꢀ20ꢀ25ꢀ and 30) catalysts increased with increas-
ing Brønsted acidity of the catalysts. Among the catalysts
19. J. C. Edwards, C. Y. Thiel, B. Benac, and J. F. Knifton, Catal. Lett.
Delivered by Ingenta to: State University of New York at Binghamton
51, 77 (1998).
IP: 37.9.41.147 On: Wed, 08 Mar 2017 14:16:41
20. J. E. Sunstrom IV, W. R. Moser, and B. Marshik-Guerts, Chem.
tested, 20H3PW12O40/MT with the largest Brønsted acid-
ity showed the highest yield for acrolein. In conclusion,
Brønsted acidity of the catalysts served as a key factor
determining the catalytic performance in the dehydration
of glycerin to acrolein.
Copyright: American Scientific Publishers
Mater. 8, 2061 (1996).
21. F. Jin and Y. Li, Catal. Today 145, 101 (2009).
22. C. A. Emeis, J. Catal. 141, 347 (1993).
23. G. S. Kumar, M. Vishnuvarthan, M. Palanichamy, and V. Murugesan,
J. Mol. Catal. A: Chem. 260, 49 (2006).
24. B. C. Gagea, Y. Lorgouilloux, Y. Altintas, P. A. Jacobs, and J. A.
Martens, J. Catal. 265, 99 (2009).
25. J. Barrault, J.-M. Clacens, and Y. Pouilloux, Top. Catal. 27, 137
(2004).
Acknowledgments: The authors with to acknowledge
the support from LG Chemical Corporation.
26. W. Suprun, M. Lutecki, T. Haber, and H. Papp, J. Mol. Catal. A:
Chem. 309, 71 (2009).
27. M. Massa, A. Andersoon, E. Finocchio, G. Busca, F. Lenrick, and
L. R. Wallenberg, J. Catal. 297, 93 (2013).
References and Notes
1. A. Srivastava and R. Prasad, Renewable Sustainable Energy Rev.
4, 113 (2000).
2. K.-W. Lee, J. X. Yu, J. H. Mei, L. Yan, Y.-W. Kim, and K.-W.
Chung, J. Ind. Eng. Chem. 13, 799 (2007).
28. A. Alhanash, E. F. Kozhevnikova, and I. V. Kozhevnikov, Appl.
Catal. A: Gen. 378, 11 (2010).
Received: 9 July 2015. Accepted: 17 February 2016.
10834
J. Nanosci. Nanotechnol. 16, 10829–10834, 2016