CeO promoting allyl alcohol synthesis from glycerol direct…
2
allyl alcohol selectivity from glycerol direct conversion obviously increased over
the MoFe/CeO in comparison with that over the MoFe-N, which beneꢁted from
2
the support eꢀect and special natural property of CeO . The catalysts, based on
2
the catalytic performance for glycerol conversion to allyl alcohol can be ranked as
MoFe/p –CeO >MoFe/p –CeO >MoFe/c–CeO >MoFe-N, showing positive
2
2
1
2
2
relationship with the surface acid concentration and reducibility of catalysts. Over
the MoFe/p –CeO , allyl alcohol of 22.6% yielded from the glycerol (conversion of
2
2
9
7.1%), along with acrolein, ethanol, propanoic acid, and acrylic acid produced with
the selectivity of 6.9%, 8.6%, 12.6%, and 7.8%, respectively. The MoFe/p –CeO
2
2
showed better catalytic stability than the MoFe/c–CeO , but the glycerol conversion
2
gradually decreased as the reaction continued.
References
1
2
.
.
D.E. Bloom, Science 333, 562 (2011)
C.T. Wu, K.M.K. Yu, F.L. Liao, N. Young, P. Nellist, A. Dent, A. Kroner, S.C.E. Tsang, Nat. Com-
mun. 3, 1050 (2012)
3
4
5
6
.
.
.
.
B. Obama, Science 355, 126 (2017)
C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu, Chem. Soc. Rev. 37, 527 (2008)
F.X. Yang, M.A. Hanna, R.C. Sun, Biotechnol. Biofuels 5, 13 (2012)
P. Cintas, S. Tagliapietra, E. Calcio Gaudino, G. Palmisano, G. Cravotto, Green Chem. 16 1056
(
2014)
7
8
9
.
.
.
R.A. Sheldon, Green Chem. 16, 950 (2014)
Y. Nakagawa, M. Tamura, K. Tomishige, Res. Chem. Intermed. 44, 3879 (2018)
H.T. Nguyen, G.S. Kamali Kannangara, Chem. Soc. Rev. 42, 9454 (2013)
1
1
0. D.L. Sun, Y. Yamada, S. Sato, W. Ueda, Appl. Catal. B: Environ. 193, 75 (2016)
1. NPCS, B.o. Consultants, Engineers, Industrial Alcohol Technology Handbook, Asia Paciꢁc Busi-
ness Press Inc. (2010)
1
1
1
1
2. K. Weissermel, H.J. Arpe, Industrial organic chemistry, 4th edition, 312 (1994)
3. J.G. Speight, Chemical and Process Design Handbook, McGraw Hill, (2002)
4. E. Arceo, P. Marsden, R.G. Bergman, J.A. Ellman, Chem. Commun. 203, 3357 (2009)
5. S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura, K. Tomishige, ACS Catal. 6, 6393
(
2016)
1
1
6. G.M. Lari, Z.P. Chen, C. Mondelli, J. Pérez-Ramírez, ChemCatChem. 9, 2195 (2017)
7. Y. Liu, H. Tüysüz, C.J. Jia, M. Schwickardi, R. Rinaldi, A.H. Lu, W. Schmidt, F. Schüth, Chem.
Commun. 46, 1238 (2010)
1
8. T. Yoshikawa, T. Tago, A. Nakamura, A. Konaka, M. Mukaida, T. Masuda, Res. Chem. Intermed.
3
7, 1247 (2011)
1
2
9. L. Harvey, G. Sánchez, E.M. Kennedy, M. Stockenhuber, Asia-Pac. J. Chem. Eng. 10, 598 (2015)
0. G. Sánchez, B.Z. Dlugogorski, E.M. Kennedy, M. Stockenhuber, Appl. Catal. A: Gen. 509, 130
(
2016)
2
2
1. A. Konak, T. Tag, T. Yoshikaw, A. Nakamur, T. Masud, Appl. Catal. B: Environ. 146, 267 (2014)
2. G. Sánchez, J. Friggieri, C. Keast, M. Drewery, B.Z. Dlugogorski, E. Kennedy, M. Stockenhuber,
Appl. Catal. B: Environ. 152–153, 117 (2014)
2
2
2
3. H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Acta Phys. Chim. Sin. 33, 2301 (2017)
4. H. Lan, X. Xiao, S.L. Yuan, B. Zhang, G.L. Zhou, Y. Jiang, Catal. Lett. 147, 2187 (2017)
5. M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J.
Hutchings, Nature Chem. 7, 1028 (2015)
2
6. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Nanorods, and
Nanocubes. J. Phys. Chem. B 109, 24380 (2005)
2
2
2
7. Y.M. Liu, L.F. Luo, Y.X. Gao, W.X. Huang, Appl. Catal. B Environ. 197, 214 (2016)
8. S.J. Chang, M. Li, Q. Hua, L.J. Zhang, Y.S. Ma, B.J. Ye, W.X. Huang, J. Catal. 293, 195 (2012)
9. Y.J. Lee, G.H. He, A.J. Akey, R. Si, I.P. Herman, J. Am. Chem. Soc. 133, 12952 (2011)
1
3