of 3-cyanopropanoic acid into acrylonitrile by a palladium-
catalysed decarbonylation-elimination reaction. Although the
isolated yields need to be improved, we showed that the
conversion was high and we hope that further study of this
transformation, especially towards the stability of acrylonitrile
during the reaction, will lead to better results. Moreover it
appeared to us that 3-cyanopropanoic acid constitutes an
interesting and promising intermediate for the preparation of
other bulk chemicals and further results will be reported in due
course.
2003, 42, 1479–1483; (f) W. P. Griffith, B. Reddy, A. G. F. Shoair, M.
Suriaatmaja, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton
Trans., 1998, 2819–2825.
9 (a) I. Kubickova, M. Snare, K. Eranen, P. Maki-Arvela and D. Yu.
Murzin, Catal. Today, 2005, 106, 197–200; (b) S. Lestari, P. Maki-
Arvela, I. Simakova, J. Beltramini, G. Q. Max Lu and D. Yu. Murzin,
Catal. Lett., 2009, 130, 48–51.
10 (a) J. M. Anderson and J. K. Kochi, J. Am. Chem. Soc., 1970, 92,
1651–1659; (b) J. M. Anderson and J. K. Kochi, J. Org. Chem., 1969,
35, 986–989; (c) W. E. Fristad, M. A. Fry and J. A. Klang, J. Org.
Chem., 1983, 48, 3575–3577.
11 (a) D. M. Fenton (Union Oil Company of California), US Pat.,
3 350 198, 1970; (b) T. A. Fogglia and P. A. Barr, J. Am. Oil Chem.
Soc., 1976, 53, 737–741; (c) J. A. Miller, J. A. Nelson and M. P. Byrne,
J. Org. Chem., 1993, 58, 18–20; (d) L. J. Gooßen and N. Rodriguez,
Chem. Commun., 2004, 724–725.
12 J. Le Noˆtre, E. L. Scott, M. C. R. Franssen and J. P. M. Sanders,
Tetrahedron Lett., 2010, 51, 3712–3715.
Acknowledgements
We are grateful to the NWO-ACTS-ASPECT program for
financial support and discussion with industrial collaborators
DSM and BASF.
13 P. A. Cruickshank and J. C. Sheehan, J. Am. Chem. Soc., 1961, 83,
2891–2895.
14 A. H. Friedman and S. Morgulis, J. Am. Chem. Soc., 1936, 58, 909–
913.
15 (a) G. Gopalakrishnan and J. L. Hogg, J. Org. Chem., 1985, 50,
1206–1212; (b) G. Laval and B. T. Golding, Synlett, 2003, 542–546.
16 (a) G. A. Hiegel, J. C. Lewis and J. W. Bae, Synth. Commun., 2005,
34, 3449–3453; (b) L. De Luca and G. Giacomelli, Synlett, 2004,
2180–2184.
Notes and references
1 E. Scott, F. Peter and J. Sanders, Appl. Microbiol. Biotechnol., 2007,
75, 751–762.
17 (a) A. Podgorsek, S. Stavber, M. Zupan and J. Iskra, Green Chem.,
2007, 9, 1212–1218; (b) A. Amati, G. Dosualdo, L. Zhao, A. Bravo,
F. Fontana, F. Minisci and H.-R. Bjorkvik, Org. Process Res. Dev.,
1998, 2, 261–269.
18 R. Mestres and J. Palenzuela, Green Chem., 2002, 4, 314–316.
19 M. Y. Park, S. G. Yang and Y. H. Kim, Phosphorus, Sulfur Silicon
Relat. Elem., 2005, 180, 1235–1240.
20 (a) M. J. Clague, N. L. Keder and A. Butler, Inorg. Chem., 1993, 32,
4754–4761; (b) M. J. Clague and A. Butler, J. Am. Chem. Soc., 1995,
117, 3475–3484; (c) G. Rothenberg and J. H. Clark, Org. Process
Res. Dev., 2000, 4, 270–274; (d) M. R. Maurya, H. Saklani and S.
Agarwal, Catal. Commun., 2004, 5, 563–568.
21 (a) A. Butler, Coord. Chem. Rev., 1999, 187, 17–35; (b) Z. Hasan, R.
Renirie, R. Kerkman, H. J. Ruijssenaars, A. F. Hartog and R. Wever,
J. Biol. Chem., 2006, 281, 9738–9744; (c) J. N. Carter-Franklin, J. D.
Parish, R. A. Tschirret-Guth, R. Daniel Little and A. Butler, J. Am.
Chem. Soc., 2003, 125, 3688–3689.
2 T. M. Lammens, D. De Biase, M. C. R. Franssen, E. L. Scott and
J. P. M. Sanders, Green Chem., 2009, 11, 1562–1567.
3 T. M. Lammens, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders,
Green Chem., 2010, 12, 1430–1436.
4 J. Sanders, E. Scott, R. Weusthuis and H. Mooibroek, Macromol.
Biosci., 2007, 7, 105–117.
5 (a) R. L. Belyea, K. D. Rausch and M. E. Tumbleson, Bioresour.
Technol., 2008, 94, 293–298; (b) Y. Kim, N. S. Mosier, R. Hendrick-
son, T. Ezeji, H. Blaschek, B. Dien, M. Cotta, B. Dale and M. R.
Ladisch, Bioresour. Technol., 2008, 99, 5165–5176; (c) M. J. Spiehs,
M. H. Whitney and G. C. Shurson, J. Anim. Sci., 2002, 80, 2639–
2645; (d) J. L. Wolfson and G. Shearer, Agron. J., 1981, 73, 611–613.
6 ICIS pricing, April 2010.
7 V. Calvino-Casilda, M. O. Guerrero-Perez and M. A. Banares, Green
Chem., 2009, 11, 939–941.
8 (a) L. M. Peters, K. E. Marple, T. W. Evans, S. H. McAlister and
R. C. Castner, Ind. Eng. Chem., 1948, 40, 2046–2053; (b) K. Mori,
K. Yamaguchi, T. Mizugaki, K. Ebitani and K. Kaneda, Chem.
Commun., 2001, 461–462; (c) D. Biondini, L. Brinchi, R. Germani,
L. Goracci and G. Savelli, Eur. J. Org. Chem., 2005, 3060–3063;
(d) F. Li, J. Chen, Q. Zhang and Y. Wang, Green Chem., 2008, 10,
553–562; (e) K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed.,
22 M. Nieder and L. Hager, Arch. Biochem. Biophys., 1985, 240, 121–
127.
23 (a) A. Podgorsek, M. Zupan and J. Iskra, Angew. Chem., Int. Ed.,
2009, 48, 8424–8450; (b) K. Kikushima, T. Moriuchi and T. Hirao,
Tetrahedron Lett., 2010, 51, 340–342.
This journal is
The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 807–809 | 809
©