ꢀ
ꢀ
Diimidazo[2,1-b:2 ,1 -i]purine (5).
d
H
(600.13 MHz; DMSO)
P. Virta, T. Holmstr o¨ m, M. U. Roslund, P. Mattjus, L. Kronberg and
R. Sj
o¨ holm, Org. Biomol. Chem., 2004, 2(6), 821–827.
7
1
.15 (1 H, d, J6,5 = 1.5 Hz, H-6), 7.23 (1 H, d, J10,9 = 1.4 Hz, H-
6
(a) J. M a¨ ki, K. D. Klika, R. Sj o¨ holm and L. Kronberg, J. Chem.
Soc., Perkin Trans. 1, 2001, 1216–1219; (b) J. M a¨ ki, P. T a¨ htinen, L.
Kronberg and K. D. Klika, J. Phys. Org. Chem., 2005, 18, 240–249.
R. J. Sijbesma and E. W. Meijer, Chem. Commun., 2003, 5–16.
M. U. Roslund, P. Virta and K. D. Klika, Org. Lett., 2004, 6(16),
2673–2676.
9 P. T a¨ htinen, A. Bagno, K. D. Klika and K. Pihlaja, J. Am. Chem.
Soc., 2003, 125, 4609–4618; K. D. Klika, J. Imrich, I. Danihel, S.
B o¨ hm, P. Kristian, S. Hamul’akov a´ , K. Pihlaja, A. Koch and E.
Kleinpeter, Magn. Reson. Chem., 2005, 43, 380–388; E. Kleinpeter
and A. Koch, J. Phys. Org. Chem., 2001, 14, 566–576.
0), 7.30 (1 H, s, H-2), 7.70 (1 H, d, J5,6 = 1.5 Hz, H-5), 7.81 (1 H,
d, J9,10 = 1.4 Hz, H-9), H-1/H-3 not observed; d
C
(150.92 MHz;
DMSO) 109.1 (C-9), 109.4 (C-5), 116.0 (C-12b), 126.4 (C-6),
29.8 (C-10), 136.2 (C-7a), 137.6 (C-3a), 141.4 (C-12a), 144.9
7
8
1
(
(
C-2); d
N
(60.81 MHz; DMSO) −215 (N-4), −213 (N-8), −164
2
N-7), −153 (N-11), −150, −137 (sp -hybridised N-1/N-3),
3
+
sp -hybridised N-3/N-1 not observed. m/z (EI) 198.0658 (M ,
requires 198.0654). UV: kmax(H O)/nm 234, 283 and
95 (e/dm mol cm 7840, 3680 and 2690); kmin(H O)/nm 252
C
2
(
9
H
6
N
6
2
3
−1
−1
−1
2
3
−1
e/dm mol cm 1840).
1
1
0 J. Arpalahti and K. D. Klika, Eur. J. Inorg. Chem., 1999, 1199–1201.
1 A. Laxer, D. T. Major, H. E. Gottlieb and B. Fischer, J. Org. Chem.,
2
001, 66, 5463–5481.
Acknowledgements
1
1
1
2 (a) R. Marek, personal communication; (b) I. Alkorta and J. Elguero,
Struct. Chem., 2003, 14(4), 377–389.
We are grateful to Mr Markku Reunanen for recording the
mass spectra. Professor J. Peter Slotte is acknowledged for
access to the fluorescence facility, and Dr Thomas Nyholm
is acknowledged for assistance. Financial support from the
Graduate School of Bioorganic and Medicinal Chemistry (P. V.),
Academy of Finland, Sigrid Jus e´ lius Foundation, Magnus
Ehrnrooth Foundation, Medicinska underst o¨ dsf o¨ reningen Liv
och H a¨ lsa, K. Albin Johansson Foundation (P. M.) is gratefully
acknowledged.
3 S. K. Mishra, M. K. Shukla and P. C. Mishra, Spectrochim. Acta,
Part A, 2000, 56, 1355–1384.
4 J. Fujimoto, Z. Nuesca, M. Mazurek and L. C. Sowers, Nucleic Acids
Res., 1996, 24(4), 754–759; B. Holz, S. Klimasauskas, S. Serva and
E. Weinhold, Nucleic Acids Res., 1998, 26(4), 1076–1083.
15 R. W. Wilson and P. R. Callis, Photochem. Photobiol., 1980, 31, 323–
27.
3
1
1
1
6 Principles of Fluorescence Spectroscopy, J. R. Lakowicz, ed., Kluwer
Academic/Plenum Publishers, New York, 1999, 2nd edn.
7 M. J. Adams, J. G. Highfield and G. F. Kirkbright, Anal. Chem.,
1
977, 49(12), 1850–1852.
8 Gaussian 98 (Revision A.12), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S.
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,
C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y.
Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.
Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
J. L. Andr e´ s, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A.
Pople, Gaussian, Inc., Pittsburgh PA, 2002.
References
1
J. R. Barrio, J. A. Secrist III and N. J. Leonard, Biochem. Biophys.
Res. Commun., 1972, 46(2), 597–604; S. C. Srivastava, S. K. Raza and
R. Misra, Nucleic Acid Res., 1994, 22, 1296–1304.
(a) S. Mikkola, N. Koissi, K. Ketom a¨ ki, S. Rauvala, K. Neuvonen
and H. L o¨ nnberg, Eur. J. Org. Chem., 2000, 2315–2323; (b) R.
Khazanchi, P.-L. Yu and F. Johnson, J. Org. Chem., 1993, 58(9),
552–2556; (c) J. T. Kusmierek, D. E. Jensen, S. J. Spengler, R.
Stolarski and B. Singer, J. Org. Chem., 1987, 52(12), 2374–2378;
d) P. D. Sattsangi, N. J. Leonard and C. R. Frihart, J. Org. Chem.,
977, 42(20), 3292–3296; (e) P. D. Sattsangi, J. R. Barrio and N. J.
Leonard, J. Am. Chem. Soc., 1980, 102, 770–774.
G. A. Pandya and M. Moriya, Biochemistry, 1996, 35, 11 487–11 492.
J. A. Secrist, J. R. Barrio, N. J. Leonard and G. Weber, Biochemistry,
2
2
(
1
3
4
19 W. J. Hehre, L. Random, P. V. R. Schleyer and J. A. Pople, Ab Initio
Molecular Orbital Theory, John Wiley & Sons Inc., New York, 1986.
20 C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618–622.
21 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
1
972, 11(19), 3499–3506.
P. Virta, T. Holmstr o¨ m, T. Munter, T. Nyholm, L. Kronberg and
R. Sj o¨ holm, Nucleosides Nucleotides Nucl. Acids, 2003, 22(1), 85–97;
5
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 9 2 4 – 2 9 2 9
2 9 2 9