ChemSusChem
10.1002/cssc.201601714
COMMUNICATION
o
reactor under the reaction condition of 3 MPa H
The Cu/SiO
2
, 180 ~ 340 C.
807; c) N. Wei, J. Quarterman, S. R. Kim, J. H. D. Cate, Y. S. Jin, Nat.
Commun. 2013, 4, 2580.
2
catalyst was prepared with ammonia evaporation
hydrothermal method[13c] and the resultant Cu nanoparticles with
[3]
a) Y. Wang, et al., Nat. Commun. 2013, 4, 2141; b) Q. N. Xia, Q. Cuan,
X. H. Liu, X. Q. Gong, G. Z. Lu, Y. Q. Wang, Angew. Chem. Int. Ed.
an average size of 2-3 nm are highly dispersed on the SiO
support (Fig.3a). Over this catalyst, MG was almost
2
2014, 53, 9755-9760.
[
4] a) T. L. Lohr, T. J. Marks, Nat. Chem. 2015, 7, 477-482; b) V. Froidevaux,
o
o
quantitatively converted to EG at 200 C, and to EtOH at 280 C
with a selectivity of 50% (Fig. 3b). The catalyst was stable during
C. Negrell, S. Caillol, J. P. Pascault, B. Boutevin, Chem. Rev. 2016,
DOI: 10.1021/acs.chemrev.6b00486.
2
4 h-run, steadily producing EG and EtOH at their respective
[5]
a) L. Bui, H. Luo, W. R. Gunther, Y. Román-Leshkov, Angew. Chem. Int.
Ed. 2013, 52, 8022-8025; b) X. D. Li, P. Jia, T. F. Wang, ACS Catal.
optimum temperatures (Fig. 3c-d). Thus, MG serves as a
platform molecule for the production of EG and EtOH from
renewable cellulosic biomass. In comparison with the one-pot
production of EG from cellulose we developed earlier,[10,11] the
current cellulose-MG-EG two-step route has the advantage of
saving separation cost (boiling points of the main and side
products are listed in Table S4), and is more flexible by the facile
switching between valuable fine chemical MG and bulk chemical
EG depending on the market. More importantly, the two-step
2
016, 6, 7621-7640.
a) M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2013, 52, 12905-
2909; b) G. S. Zhang, M. M. Zhu, Q. Zhang, Y. M. Liu, H. Y. He, Y.
[
6]
7]
1
Cao, Green Chem. 2016, 18, 2155-2164.
[
a) C. Luo, S. Wang, H. Liu, Angew. Chem. Int. Ed. 2007, 46, 7636-7639;
b) N. Villandier, A. Corma, Chem. Commun. 2010, 46, 4408-4410.
a) Y. P. Huo, H. Q. Zeng, Y. G. Zhang, ChemSusChem 2016, 9, 1078-
1080; b) F. Jérôme, G. Chatel, K. D. O. Vigier, Green Chem. 2016, 18,
3903-3913.
[8]
[
9] a) H. Kobayashi, H. Kaiki, A. Shrotri, K. Techikawara, A. Fukuoka, Chem.
Sci. 2016, 7, 692-696; b) A. Fukuoka, P. L. Dhepe, Angew. Chem. Int.
Ed. 2006, 45, 5161-5163.
cellulose-MG-EtOH approach provides
a non-fermentation
pathway to the renewable cellulosic ethanol which are currently
the only established biofuel as an additive up to 10% in
gasoline.[21]
[10] N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G.
Chen, Angew. Chem. Int. Ed. 2008, 47, 8510-8513.
In summary, we have developed a new chemocatalytic
approach for production of MG, EG, and EtOH from renewable
lignocellulose. In the first step, MG was produced up to a yield of
[
11] a) Z. J. Tai, J. Y. Zhang, A. Q. Wang, M. Y. Zheng, T. Zhang, Chem.
Commun. 2012, 48, 7052-7054; b) A. Q. Wang, T. Zhang, Acc. Chem.
Res., 2013, 46, 1377-1386; c) R. Y. Sun, T. T. Wang, M. Y. Zheng, W.
Q. Deng, J. F. Pang, A. Q. Wang, X. D. Wang, T. Zhang, ACS Catal.
57.7 C% from the one-pot transformation of cellulose in
2015, 5, 874-883; d) Y. Liu, C. Luo, H. Liu, Angew. Chem. Int. Ed. 2012,
methanol with the catalysis of WOx and the assistence of
oxygen. Then, both EG and EtOH were produced with a high
selectivity in the second step via hydrogenation/hydrogenolysis
of MG. This approach will pave a new way for the biomass
conversion since MG can serve as a new biomass platform
molecule for production of a variety of bulk and fine chemicals.
51, 3249-3253.
[
12] a) T. Hayashi, T. Inagaki, N. Itayama, H. Baba, Catal. Today 2006, 117,
10-213; b) L. L. Zhang, et al., Green Chem. 2013, 15, 2680-2684.
13] a) Y. Sun, H. Wang, J. H. Shen, H. C. Liu, Z. M. Liu, Catal. Commun.
009, 10, 678-681; b) J. W. Zheng, H. Q. Lin, Y. N. Wang, X. L. Zheng,
2
[
2
X. P. Duan, Y. Z. Yuan, J. Catal. 2013, 297, 110-118; c) J. L. Gong, H.
R. Yue, Y. J. Zhao, S. Zhao, L. Zhao, J. Lv, S. P. Wang, X. B. Ma, J.
Am. Chem. Soc., 2012, 134, 13922-13925.
[
14]
a) D. Q. Ding, J. X. Xi, J. J. Wang, X. H. Liu, G. Z. Lu, Y. Q. Wang,
Green Chem. 2015, 17, 4037-4044; b) W. P. Deng, M. Liu, Q. H. Zhang,
X. S. Tan, Y. Wang, Chem. Commun. 2010, 46, 2668-2670; c) M. S.
Holm, S. Saravanamurugan, E. Taarning, Science 2010, 328, 602-605;
d) F. de Clippel, et al., J. Am. Chem. Soc. 2012, 134, 10089-10101; e)
M. Dusselier, R. D. Clercq, R. Cornelis, B. F. Sels, Catal. Today 2017,
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (21373206, 21376045, 21306191,
2
1673228, 21690084, and U1662130) and the Strategic Priority
Research Program of the Chinese Academy of Sciences
XDB17020100).
279, 339-344.
[
15]
16]
a) J. Z. Zhang, X. Liu, M. Sun, X. H. Ma, Y. Han, ACS Catal. 2012, 2,
(
1
698-1702; b) P. Y. Dapsens, C. Mondelli, B. T. Kusema, R. Verel, J.
Pérez-Ramírez, Green Chem. 2014, 16, 1176-1186; c) M. Dusselier, P.
V. Wouwe, S. D. Smet, R. D. Clercq, L. Verbelen, P. V. Puyvelde, F. E.
D. Prez, B. F. Sels, ACS Catal. 2013, 3, 1786-1800.
Keywords: Methyl glycolate • Ethylene glycol • Ethanol •
supported catalysts • biomass
[
a) J. Y. Zhang, B. L. Hou, A. Q. Wang, Z. L. Li, H. Wang, T. Zhang,
AIChE J. 2014, 60, 3804-3813; b) J. Y. Zhang, B. L. Hou, A. Q. Wang,
Z. L. Li, H. Wang, T. Zhang, AIChE J. 2015, 61, 224-238; c) G. H. Zhao,
M. Y. Zheng, J. Y. Zhang, A. Q. Wang, T. Zhang, Ind. Eng. Chem. Res.
[
1]
a) C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff,
Science 2012, 337, 695-699; b) J. S. Luterbacher, J. M. Rand, D. M.
Alonso, J. Han, J. T. Youngquist, C. T. Maravelias, B. F. Pfleger, J. A.
Dumesic, Science 2014, 343, 277-280; c) H. G. Cha, K. S. Choi, Nat.
Chem. 2015, 7, 328-333; d) C. Li, X. Zhao, A. Wang, G. W. Huber, T.
Zhang, Chem. Rev. 2015, 115, 11559-11624; e) P. A. Jacobs, M.
Dusselier, B. F. Sels, Angew. Chem. Int. Ed. 2014, 53, 8621-8626; f) J.
P. Lange, Angew. Chem. Int. Ed. 2015, 54, 13186-13197; g) R. Rinaldi,
R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx,
B. M. Weckhuysen, Angew. Chem. Int. Ed. 2016, 55, 8164-8215; h) W.
Liu, W. Mu, Y. L. Deng, Angew. Chem. Int. Ed. 2014, 53, 13558-13562.
a) K. Hirajima, M. Taguchi, T. Funazukuri, Ind. Eng. Chem. Res. 2015,
2
013, 52, 9566-9572; d) Y. Liu, C. Luo, H. C. Liu, Angew. Chem. Int. Ed.
012, 51, 3249-3253.
2
[
[
[
[
17]
18]
19]
Y. Zhai, Y. Wan, Y. Cheng, Y. Shi, F. Zhang, B. Tu, D. Zhao, J. Porous
Mater. 2008, 15, 601-611.
L. Q. Xue, K. Cheng, H. X. Zhang, W. P. Deng, Q. H. Zhang, Y. Wang,
Catal. Today 2016, 274, 60-66.
J. Wang, X. C. Zhao, N. Lei, L. Li, L. L. Zhang, S. T. Xu, S. Miao, X. L.
Pan, A. Q. Wang, T. Zhang, ChemSusChem 2016, 9, 784-790.
20] a) Q. Song, F. Wang, J. Y. Cai, Y. H. Wang, J. J. Zhang, W. Q. Yu, J.
Xu, Energy Environ. Sci. 2013, 6, 994-1007; b) R. Ma, W. Y. Hao, X. L.
Ma, Y. Tian, Y. D. Li, Angew. Chem. Int. Ed. 2014, 53, 7310-7315.
21] R. F. Service, Science 2010, 329, 784-785.
[
2]
54, 6052-6059; b) M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S.
Adney, M. R. Nimlos, J. W. Brady, T. D. Foust, Science 2007, 343, 804-
[
This article is protected by copyright. All rights reserved.