course, further degradation of diols and methanation were the
main side reactions.
Science & Technology Committee (08DZ2270500, 06JC14004)
is kindly acknowledged.
In conclusion, a new and efficient catalytic route for the
production of PG and EG by catalytic combination of glycerol
aqueous reforming and hydrogenation of glycerol has been
developed using the commercial Raney Ni as catalyst. The new
route provides a feasible approach for the direct use of a by-
product of bio-diesel, facilitating an energy-efficient and atom-
economic process. This process can be commercialized easily
according to the following considerations. Firstly, the reaction
conditions are much milder than those previously reported, since
no hydrogen was needed and the reaction can be conducted
under ambient pressure and the diluted aqueous glycerol can
be directly used as the substrate without any concentration.
Secondly, the catalyst is the commonly used commercial Raney
Ni which is remarkably cheaper than the noble metal catalysts.
It is interesting to find that the Raney Ni can be easily
recovered from the reaction mixture by filtration or magnetic
separation since Raney Ni is paramagnetic, and the catalyst can
be conveniently reused without any further treatment. Thirdly,
the two diol products can be easily separated from the reaction
system because glycerol is totally converted and the catalyst can
be easily removed. Finally, the gaseous products are very useful
Notes and references
1
2
3
G. H. Xu, Y. C. Li and H. J. Wang, Ind. Eng. Chem. Res., 1995, 34,
2371.
T. Haas, B. Jaeger, R. Weber and S. F. Mitchell, Appl. Catal., A, 2005,
2
80, 83.
(a) R. D. Cortright, R. R. Davda and J. A. Dumesic, Nature, 2002,
418, 964; (b) G. W. Huber, J. W. Shabaker and J. A. Dumesic, Science,
2003, 300, 2075; (c) G. A. Deluga, J. R. Salge, L. D. Schmidt and
X. E. Verykios, Science, 2004, 303, 993; (d) M. Asadullah, S. Ito, K.
Kunimori, M. Yamada and K. Tomishige, J. Catal., 2002, 208, 255.
G. W. Huber, J. N. Chheda, C. J. Barrett and J. A. Dumesic, Science,
2005, 308, 1446; G. W. Huber, J. N. Chheda, C. J. Barrett and J. A.
Dumesic, Pure Appl. Chem., 1997, 69, 1853.
4
5
(a) J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.,
Int. Ed., 2007, 46, 7164; (b) M. Pagliaro, R. Ciriminna, H. Kimura,
M. Rossi and C. D. Pina, Angew. Chem., Int. Ed., 2007, 46, 4434;
(c) A. Behr, J. Eilting, K. Irawadi, J. Leschinski and F. Lindner,
Green Chem., 2008, 10, 13.
6
7
(a) C. Montassier, D. Giraud, J. Barbier and J. P. Boitiaux, Bull. Soc.
Chim. Fr., 1989, 2, 148; (b) C. Montassier, D. Giraud and J. Barbier,
Stud. Surf. Sci. Catal., 1988, 41, 165; (c) C. Montassier, J. M. Dumas,
P. Granger and J. Barbier, Appl. Catal., A, 1995, 121, 231; (d) C.
Montassier, J. C. Menezo, J. Moukolo, J. Naja, L. C. Hoang and J.
Barbier, J. Mol. Catal., 1991, 70, 65.
S. Ludwig and E. Manfred, US Pat., 5 616 817, 1997.
since they are mixture of CH
which is very convenient for its further use as fuel or a hydrogen
resource.
4
and CO
2
, no CO was detected,
8 (a) Y. Kusunoki, T Miyazawa, K. Kunimori and K. Tomishige, Catal.
Commun., 2005, 6, 645; (b) D. G. Lahr and B. H. Shanks, J. Catal.,
2
005, 232, 386.
9
J. Chaminand, L. Djakovitch, P. Gallezot, P. Marion, C. Pinel and
C. Rosier, Green Chem., 2004, 6, 359.
1
1
0 (a) S. K. Tyrlik, D. Szerszen, M. Olejnik and W. Danikiewicz, J. Mol.
Catal. A: Chem., 1996, 106, 223; (b) T. Miyazawa, Y. Kusunoki, K.
Kunimori and K. Tomishige, J. Catal., 2006, 240, 213.
Acknowledgements
Financially supported by the Major State Basic Resource Devel-
opment Program (Grant No. 2003CB615807), NSFC (Project
1 (a) T. Hirai, N. Ikenaga, T. Miyake and T. Suzuki, Energy Fuels,
2
005, 19, 1761; (b) J. W. Shabaker, G. W. Huber, R. R. Davda, R. D.
2
0573024), and the Natural Science Foundation of Shanghai
Cortright and J. A. Dumesic, Catal. Lett., 2003, 88, 1.
1
516 | Green Chem., 2009, 11, 1514–1516
This journal is © The Royal Society of Chemistry 2009