Journal of the American Chemical Society
COMMUNICATION
Scheme 2. Cascade Catalytic Conversion of CO to CH OH
’ AUTHOR INFORMATION
2
3
with Catalysts A-1, B-2, C-1, and CD OH
3
Corresponding Author
’
ACKNOWLEDGMENT
C.A.H. thanks the NSF for a Graduate Research Fellowship
and the University of Michigan Graduate School for a Rackham
Merit Fellowship. In addition, we thank the NSF Center for
Enabling New Technologies through Catalysis for support of this
work. Finally, we thank Professor Karen Goldberg and Kate Allen
for helpful discussions.
Scheme 3. Transfer Approach to Cascade Catalytic CO2
Hydrogenation
’
REFERENCES
(
1) Annual Energy Review 2009; U.S. Energy Information Adminis-
tration: Washington, DC, 2010; Tables 12.2À12.4, pp 349À353.
2) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006,
03, 15729.
3) (a) Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.;
Srivastava, R. D. Int. J. Greenhouse Gas Control 2008, 2, 9.
b) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.;
(
1
(
(
Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. Energy
Environ. Sci. 2010, 3, 1645.
(4) (a) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.(b) World
Wind Energy Report 2010; World Wind Energy Association: Bonn,
Germany, 2011. (c) Centi, G.; Perathoner, S. ChemSusChem 2010, 3, 195.
(
5) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas:
basis of the data in Tables 1 and 3. A series of control experiments
revealed that the major problem for cascade catalysis is the
The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006.
(6) (a) Dai, W.; Wang, X.; Wu, G.; Guan, N.; Hunger, M.; Li, L. ACS
Catal. 2011, 1, 292. (b) Cui, Z.-M.; Liu, Q.; Song, W.-G.; Wan, L.-J.
Angew. Chem., Int. Ed. 2006, 45, 6512.
deactivation of catalyst C-1 by Sc(OTf) . For example, the C-1-
3
catalyzed hydrogenation of HCO CH with 5 bar H proceeded in
2
3
2
(
7) (a) Ushikoshi, K.; Mori, K.; Watanabe, T.; Takeuchi, M.; Saito,
M. Stud. Surf. Sci. Catal. 1998, 114, 357. (b) Saito, M. Catal. Surv. Jpn.
998, 175. (c) Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365.
8) Hydrogenation of CO to give mixtures of CO, CH OH, and
only 32% yield in the presence of 1 mol % Sc(OTf) (see Table S7
3
in the Supporting Information).
1
As a low-tech solution to this competing decomposition
process, we physically separated the cross-reactive catalysts
within the high-pressure vessel. Catalysts A and B were placed
in a vial in the center of the vessel, while C was placed in the outer
well of the Parr reactor (Figure S3). In this scenario, the initially
formed methyl formate (bp = 32 °C at STP) should transfer from
the inner to the outer vessel and undergo hydrogenation.
However, the low volatility of the catalysts should prevent
deactivation. As shown in Scheme 3, this sequence was success-
ful, and under optimal conditions it provided 21 turnovers of
(
2
3
4
CH has been reported. This is believed to proceed via the reverse water-
gas shift reaction to generate CO and then subsequent hydrogenation of
CO to form further reduced products. For examples, see: (a) Tominaga,
K.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem.
Commun. 1993, 629. (b) Tominaga, K.-I.; Sasaki, Y.; Saito, M.; Hagihara,
K.; Watanabe, T. J. Mol. Catal. 1994, 89, 51.
(9) Joo, F. Activation of Carbon Dioxide. In Physical Inorganic
Chemistry: Reactions, Processes, and Applications; Wiley-VCH: Weinheim,
Germany, 2007; pp 259.
(10) For examples of stoichiometric reduction of CO to CH OH
2 3
mediated by frustrated Lewis base pairs, see: (a) Ashley, A. E.; Thompson,
A. L.; O’Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839. (b) M ꢀe nard, G.;
Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796. For a review, see:(c)
Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
1
3
28
CH OH from CO2.
3
In conclusion, this communication has demonstrated the
viability of cascade catalysis for the reduction of CO with H .
2
2
This approach offers the distinct advantage that it provides
opportunities for detailed analysis of the molecular basis of
catalyst incompatibilities, the modes of catalyst decomposition,
and the slow step of the sequence. As such, we anticipate that it
will enable rational tuning of each of the individual catalysts
(11) For catalytic reduction of CO to CH OH with borane redu-
2
3
cing agents, see: (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H.
J. Am. Chem. Soc. 2010, 132, 8872. (b) Huang, F.; Zhang, C.; Jiang, J.;
Wang, Z.-X.; Guan, H. Inorg. Chem. 2011, 50, 3816.
(12) For catalytic reduction of CO to CH OH with silane reducing
2 3
(
AÀC) in order to improve the turnover numbers and turnover
agents, see: (a) Eisenschmid, T. C.; Eisenberg, R. Organometallics 1989,
, 1822. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed.
009, 48, 3322. (c) Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z.-X. J. Am.
frequencies for this process. Efforts in all these areas are currently
8
2
underway in our group and will be reported in due course.
Chem. Soc. 2010, 132, 12388.
2
13) For other examples of homogeneous catalytic CO reduction, see:
(
’
ASSOCIATED CONTENT
(
(
a) Laitar, D. S.; M €u ller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.
b) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128, 12362. For
S
Supporting Information. Experimental details and re-
b
reviews, see: (c) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347.
(d) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765.
(14) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev.
2005, 105, 1001.
presentative NMR spectra for the characterization of CO2
reduction products. This material is available free of charge via
the Internet at http://pubs.acs.org.
1
8124
dx.doi.org/10.1021/ja208760j |J. Am. Chem. Soc. 2011, 133, 18122–18125