10.1002/anie.201710605
Angewandte Chemie International Edition
COMMUNICATION
occurred to the Cu0 peak at 8979.1 eV in the first derivative
curve after the reduced xCu@mSiO2 was exposed to methanol
for just 1 min (Figures 4 and S27), while the peak of Cu+ at
8981.0 eV greatly increased in intensity. This indicates that most
of Cu0 species was promptly oxidized to Cu+ species.
Interestingly, as the reaction went on, these oxidized Cu+
species were gradually reduced back to Cu0 species, leading to
a Cu0/Cu+ ratio very similar to that of the reduced catalyst (Table
S5). Thus, the induction period results from the prompt oxidation
of Cu0 to Cu+, but a gradual reduction of Cu+ to Cu0. The rapid
oxidation of Cu0 to Cu+ is most likely due to the strong
adsorption of CH3O on the Cu0 site, while the gradual recovery
of Cu+ to Cu0 is caused by the dehydrogenation of CH3O to
HCHO that is rate-limiting step and accelerated by adding H2
(Table S10 and Figures S28, S29). This is supported by greatly
increasing methanol conversion by pulsing HCHO due to
acceleration of CH3O consumption that results in the release of
Cu0 sites (Figure S30 and Table S10).
Conflict of interest
The authors declare no conflict of interest.
Keywords: core-shell structure • Cu-based catalyst • induction
period • methanol dehydrogenation • reaction mechanisms
[1]
[2]
a) S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I.
Chorkendorff, J. Sehested, Science 2016, 352, 969-974; b) M. Gupta,
M. L. Smith, J. J. Spivey, ACS Catal. 2011, 1, 641-656.
a) S. Sá, H. Silva, L. Brandão, J. M. Sousa, A. Mendes, Appl. Catal. B
2010, 99, 43-57; b) H. Xi, X. Hou, Y. Liu, S. Qing, Z. Gao, Angew.
Chem. Int. Ed. 2014, 53, 11886-11889; Angew. Chem. 2014, 126,
12080-12083.
[3]
a) B. Eren, C. Heine, H. Bluhm, G. A. Somorjai, M. Salmeron, J. Am.
Chem. Soc. 2015, 137, 11186-11190; b) W.-W. Wang et al., ACS Catal.
2015, 5, 2088-2099; c) D. Delimaris, T. Ioannides, Appl. Catal. B 2009,
89, 295-302.
[4]
[5]
A. A. Gokhale, J. A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 2008,
130, 1402-1414.
a) L. Chen, P. Guo, M. Qiao, S. Yan, H. Li, W. Shen, H. Xu, K. Fan, J.
Catal. 2008, 257, 172-180; b) G. Onyestyák, S. Harnos, D. Kalló, Catal.
Commun. 2012, 26, 19-24; c) H. Yue, Y. Zhao, S. Zhao, B. Wang, X.
Ma, J. Gong, Nat. Commun. 2013, 4, 2339-2345.
[6]
a) F. Wang, R. Shi, Z.-Q. Liu, P.-J. Shang, X. Pang, S. Shen, Z. Feng,
C. Li, W. Shen, ACS Catal. 2013, 3, 890-894; b) E. D. Guerreiro, O. F.
Gorriz, J. B. Rivarola, L. A. Arrúa, Appl. Catal. A 1997, 165, 259-271; c)
A. G. Sato, D. P. Volanti, D. M. Meira, S. Damyanova, E. Longo, J. M.
C. Bueno, J. Catal. 2013, 307, 1-17.
[7]
[8]
[9]
a) T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M. G.
Willinger, Angew. Chem. Int. Ed. 2015, 54, 4544-4548; Angew. Chem.
2015, 127, 4627-4631; b) A. Reinsdorf, W. Korth, A. Jess, M. Terock, F.
Klasovsky, R. Franke, ChemCatChem 2016, 8, 3592-3599.
a) M. Behrens et al., Science 2012, 336, 893-897; b) N. W. Cant, S. P.
Tonner, D. L. Trimm, M. S. Wainwright, J. Catal. 1985, 91, 197-207; c)
M.-J. Chung, D.-J. Moon, K.-Y. Park, S.-K. Ihm, J. Catal. 1992, 136,
609-612.
Figure 4. (a) In situ Cu K-edge XANES curves of 7Cu@mSiO2 during DOM,
and (b) their corresponding first derivative profiles: Ⅰ) reduced sample; Ⅱ–Ⅶ)
after reaction at 230 oC for 1, 10, 20, 30, 40 and 60 min, respectively.
In summary, Cu NPs encapsulated in mesoporous silica
shell shows unexpectedly high stability in the DOM to MeF. The
catalytic performance of deactivated sample could be nearly
a) B. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh,
L.-W. Wang, G. A. Somorjai, M. Salmeron, Science 2016, 351, 475-
478; b) S. Zhao, H. Yue, Y. Zhao, B. Wang, Y. Geng, J. Lv, S. Wang, J.
Gong, X. Ma, J. Catal. 2013, 297, 142-150.
o
recovered after calcination at 550 C in air. Cu0 sites enable the
cleavage of O–H in methanol to CH3O, and further to HCHO by
breaking C–H bond, while Cu+ species are unable to catalyze
these steps, but immediately decompose HCHO generated on
Cu0 into CO and H2. The MeF is formed through the reaction of
CH3O and HCHO over the Cu0 sites, not via the Tishchenko
mechanism. The induction period originates from a prompt
oxidation of Cu0 to Cu+ by strong adsorption of CH3O species,
and a gradual recovery of Cu+ to Cu0 by consuming CH3O by
generated H* and HCHO.
[10] T. Sodesawa, M. Nagacho, A. Onodera, F. Nozaki, J. Catal. 1986, 102,
460-463.
[11] a) J. Lee, J. C. Kim, Y. G. Kim, Appl. Catal. 1990, 57, 1-30; b) S. Lin, D.
Xie, H. Guo, ACS Catal. 2011, 1, 1263-1271; c) R. Zhang, Y. Sun, S.
Peng, Fuel 2002, 81, 1619-1624.
[12] a) S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A.
Somorjai, Nat. Mater. 2009, 8, 126-131; b) W. Li, D. Zhao, Adv. Mater.
2013, 25, 142-149.
[13] X. Guo, Y. Deng, D. Gu, R. Che, D. Zhao, J. Mater. Chem. 2009, 19,
6706-6712.
[14] F. Bauer, H. G. Karge, Mol. Sieves 2007, 5, 249-364.
[15] a) K. M. Valkaj, A. Katovic, S. Zrnĉević, J. Hazard. Mater. 2007, 144,
663-667; b) S. Lee, A. Sardesai, Top. Catal. 2005, 32, 197-207.
[16] L. L. Mueller, G. L. Griffin, J. Catal. 1987, 105, 352-358.
[17] G. J. Millar, C. H. Rochester, K. C. Waugh, J. Chem. Soc. Faraday
Trans. 1991, 87, 2785-2793.
Acknowledgements
This work is supported by the National Natural Science
Foundation of China (21303240, 21573270, U1510104,
21773281), the Shanxi Youth Science Foundation (2014021014-
5) and Talent Scientific and Technological Innovation Program
[18] a) I. A. Fisher, A. T. Bell, J. Catal. 1999, 184, 357-376; c) G. J. Millar, C.
H. Rochester, K. C. Waugh, J. Chem. Soc. Faraday Trans. 1991, 87,
2795-2804; d) S. J. Mcgovern, B. S. H. Royce, J. B. Benziger, Appl.
Surf. Sci. 1984, 18, 401-413.
(201605D211001),
Partnership Program for Creative Research Teams. The Beijing
and Shanghai Synchrotron Radiation Facilities are
acknowledged for measuring in situ XAFS spectra.
and
the
CAS/SAFEA
International
This article is protected by copyright. All rights reserved.