Journal of the American Chemical Society
Article
deactivation in zeolites.28,29 The catalyst studied in this work is
less susceptible to this type of catalytic deactivation.
(13) Alayoglu, S.; Aliaga, C.; Sprung, C.; Somorjai, G. A. Catal. Lett.
2011, 141, 914.
(14) Pushkarev, V. V.; An, K.; Alayoglu, S.; Beaumont, S. K.;
Somorjai, G. A. J. Catal. 2012, 292, 64.
(15) Pushkarev, V. V.; Musselwhite, N.; An, K.; Alayoglu, S.;
Somorjai, G. A. Nano Lett. 2012, 12, 5196.
(16) Musselwhite, N.; Alayoglu, S.; Melaet, G.; Pushkarev, V. V.;
Lindeman, A. E.; An, K.; G.A. Somorjai, G. A. Catal. Lett. 2013, 143,
907.
(17) Bhatia, S. Zeolite Catalysts: Principles and Applications; CRC
Press: Boca Raton, FL, 1990.
(18) Corma, A.; Planelles, J.; Sanchez-Marin, J.; Tomas, F. J. Catal.
1985, 93, 30.
(19) Fraile, J. M.; Garcia, J. I.; Mayoral, J. A.; Pires, E.; Salvatella, L.;
Ten, M. J. Phys. Chem. B 1999, 103, 1664.
(20) Fraile, J. M.; Garcia, J. I.; Mayoral, J. A.; Pires, E. J. Mol. Catal. A:
Chem. 1997, 119, 95.
(21) Xu, M.; Arnold, A.; Buchholz, A.; Wang, W.; Hunger, M. J. Phys.
Chem. B 2002, 106, 12140.
(22) Fung, J.; Wang, I. J. Catal. 1996, 164, 166.
(23) Triwahyono, S.; Jalil, A. A.; Ruslan, N. N.; Kamarudin, N. H. N.
J. Catal. 2013, 303, 50.
(24) Ramirez, S.; Viniegra, M.; Dominguez, J. M.; Schacht, P.; De
Menorval, L. C. Catal. Lett. 2000, 66, 25.
(25) Pajonk, G. M. Appl. Catal., A 2000, 202, 157.
(26) Roessner, F.; Roland, U. J. Mol. Catal. A: Chem. 1996, 112, 401.
(27) Ayrault, P.; Datka, J.; Laforge, S.; Martin, D.; Guisnet, M. J. Phys.
Chem. B 2004, 108, 13755.
CONCLUSIONS
■
In summary, three model catalysts were studied for the
isomerization of n-hexane. The catalysts were colloidally
synthesized Pt nanoparticles (2.5 nm) loaded onto mesoporous
silica (MCF-17), MCF-17 which had been modified with Al,
and the third catalyst was Al modified MCF-17 mesoporous
silica loaded with Pt nanoparticles (2.5 nm). It was found that
the unmodified MCF-17/Pt catalyst was selective toward the
undesired cracking products, and showed low overall activity
for n-hexane reforming, indicating that the Pt metal alone was
not a major contributor to the chemistry. The Al modified
MCF-17 catalyst without Pt was found to be catalytically
inactive at all studied temperatures, indicating the acidity alone
could not accomplish the isomerization chemistry. However,
when Pt nanoparticles were loaded onto this Al modified MCF-
17 support, the catalyst was found to be remarkably active and
selective for the isomerization of n-hexane. This remarkable
selectivity was attributed to the close proximity between the
acidic sites in the catalytically inactive oxide support and the Pt
metal, which act in tandem to significantly promote the
isomerization of the hydrocarbon.
AUTHOR INFORMATION
Corresponding Authors
(28) Srinivas, S. T.; Rao, P. K. J. Catal. 1994, 148, 470.
(29) Guisnet, M.; Magnoux, P. Catal. Today 1997, 36, 477.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work is funded by The Chevron Energy Technology
Company. We acknowledge support from the Director, Office
of Science, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geological and Biosciences of the U.S.
DOE under contract DE-AC02-05CH11231. K.N. thanks the
Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2012R1A6A3A03039602). Work at the Molecular
Foundry was supported by the Director, Office of Science,
Office of Basic Energy Sciences, Division of Material Sciences
and Engineering, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
REFERENCES
■
(1) Somorjai, G.A.; Li, Y. Introduction to Surface Chemistry and
Catalysis; Wiley: Hoboken, NJ, 2010.
(2) Somorjai, G. A.; Park, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9212.
(3) Clark, J. H. Green Chem. 1999, 1, 1.
(4) Sinfelt, J. H. Catal. Lett. 1991, 9, 159.
(5) Han, Y.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2007, 19, 22922.
(6) Yang, M.; Somorjai, G. A. J. Am. Chem. Soc. 2004, 126, 7698.
(7) Davis, S. M.; Zaera, F.; Somorjai, G. A. J. Am. Chem. Soc. 1982,
104, 7453.
(8) Iglesia, E.; Soled, D. G.; Kramer, G. M. J. Catal. 1993, 144, 238.
(9) Antos, G.J.; Aitani, A.M. Catalytic Naphtha Reforming; Marcel
Dekker: New York, 2004.
(10) Han, Y.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2007, 19, 22922.
(11) Jun, S.; Ryoo, R. J. Catal. 2000, 195, 237.
(12) Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.;
Chmelka, B. F.; Ryoo, R. Science 2011, 333, 328.
16665
dx.doi.org/10.1021/ja509638w | J. Am. Chem. Soc. 2014, 136, 16661−16665