Inorganic Chemistry
Article
(Figure 9 (right)). The absence of an electron donor for the
fluorescence quenching in the PET process elucidated the
intense fluorescence in rhodamine 6G_oxadiazole. TD-DFT
calculations on the absorption spectra of 4 and rhodamine
6G_oxadiazole were also performed, as shown in Supporting
Information, Figure S11 and Table S2.
the equipment for photophysical measurements and for her
helpful discussions.
REFERENCES
■
(1) (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017. (b) Pedersen,
C. J.; Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1021.
(c) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009.
(2) (a) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.;
CONCLUSION
■
Mirkin, C. A. Science 1997, 277, 1078. (b) Gopel, W. Mikrochim. Acta
̈
In conclusion, a novel class of rhodamine derivatives with two
spirolactam groups and five fused six-membered rings were
synthesized, and their stereoisomers of cis- and trans-forms
were successfully separated and isolated. Compared to the
related rhodamine B base and rhodamine B hydrazide with only
one spirolactam group, derivatives 1 or 2 with two binding sites
were found to exhibit selective Hg(II) ion sensing behaviors.
Successive ring-openings of two spirolactam moieties were
demonstrated to show drastic color changes and emission
enhancement in their solution mixture of Hg(II) ion. The
extension of the π-conjugation across the fused-structure of five
rings shifts the absorption and emission to the red, compared
with those of common rhodamine deriviatives. Compound 2
showed the selective sensing to Hg(II) ion without the
interference of acid, and different conformations in their
stereoisomers were found to influence the ring-opening
behaviors differently. Arising from two successive ring-opening
processes in the presence of various concentration of Hg(II)
ion, two reporting states with different spectroscopic properties
were suggested, that is, the first state showing pink color
(absorption maximum at 496 nm) but no emission, while the
second giving purple color (absorption maximum at 593 nm)
and red emission (emission maximum at 620 nm). The
mechanism of such different spectroscopic responses was also
proposed, which has also been supported by computational
studies. An extension of the present work to the study of
corresponding chemodosimeters from the compounds with two
spirolactam groups has been made, in which an stoichiometric
and irreversible Hg(II)-promoted reaction of thiosemicarba-
zides was utilized to form 1,3,4-oxadiazoles.
1997, 125, 179. (c) Gvpel, W. Microelectron. Eng. 1996, 32, 75.
(d) Zhu, S. S.; Carroll, P. J.; Swager, T. M. J. Am. Chem. Soc. 1996, 118,
8713.
(3) (a) Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecular
Recognition; American Chemical Society: Washington, DC, 1993.
(b) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A.
J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997,
97, 1515. (c) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.
(d) Martínez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419.
́
́
̃
(4) (a) Bryan, A. J.; de Silva, A. P.; de Silva, S. A.; Rupasinghe, R. A.
D. D.; Sandanayake, K. R. A. S. Biosensors 1989, 4, 169. (b) Woodroofe,
C. C.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 11458. (c) Kim, S. K.;
Lee, S. H.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004,
126, 16499. (d) Kim, S. K.; Kim, S. H.; Kim, H. J.; Lee, S. H.; Lee, S.
W.; Ko, J.; Bartsch, R. A.; Kim, J. S. Inorg. Chem. 2005, 44, 7866.
(e) Zhang, G.; Zhang, D.; Yin, S.; Yang, X.; Shuai, Z.; Zhu, D. Chem.
Commun. 2005, 2161. (f) Met
J. Mater. Chem. 2005, 15, 2965. (g) Coronado, E.; Galan-Mascaros, J.
́
ivier, R.; Leray, I.; Lebeau, B.; Valeur, B.
R.; Marti-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gratzel,
̈
M.; Nazeeruddin, Md. K. J. Am. Chem. Soc. 2005, 127, 12351. (h) Lee,
S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S.
Org. Lett. 2006, 8, 1641. (i) Nazeeruddin, M. K.; Di Censo, D.;
Humphry-Baker, R.; Gratzel, M. Adv. Funct. Mater. 2006, 16, 189.
̈
(j) Liu, L.; Zhang, G.; Xiang, J.; Zhang, D.; Zhu, D. Org. Lett. 2008, 10,
4581.
(5) (a) Noelting, E.; Dziewonsky, K. Ber. Dtsch. Chem. Ges. 1905, 38,
3516. (b) Valeur, B. Molecular Fluorescence: Principles and Applications;
Wiley-VCH: New York, 2001; Chapter 10.
(6) For some reviews and examples: (a) Kim, H. N.; Lee, M. H.;
Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465.
(b) Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev.
2009, 38, 2410. (c) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110,
6280.
(7) (a) Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997,
119, 7386. (b) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M.
S.; Nam, W.; Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107.
(8) (a) Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127,
16760. (b) Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu,
J.-G. Org. Lett. 2006, 8, 859. (c) Choi, M. G.; Ryu, D. H.; Jeon, H. L.;
Cha, S.; Cho, J.; Joo, H. H.; Hong, K. S.; Lee, C.; Ahn, S.; Chang, S.-K.
Org. Lett. 2008, 10, 3717. (d) Suresh, M.; Shrivastav, A.; Mishra, S.;
Suresh, E.; Das, A. Org. Lett. 2008, 10, 3013. (e) Wu, D.; Huang, W.;
Duan, C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538. (f) Mao, J.;
Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Org. Lett. 2007, 9, 4567.
(g) Atanu, J.; Kim, J. S.; Jung, H. S.; Parimal, K. B. Chem. Commun.
2009, 4417. (h) Wang, C.; Wong, K. M. C. Inorg. Chem. 2011, 50,
5333. (i) Hirayama, T.; Okuda, K.; Nagasawa, H. Chem. Sci. 2013, 4,
1250.
(9) (a) Wu, J. S.; Hwang, I. C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007,
9, 907. (b) Zhang, X.; Xiao, Y.; Xiao, Y.; Qian, X. Angew. Chem., Int.
Ed. 2008, 47, 8025. (c) Zhang, J. F.; Lim, C. S.; Cho, B. R.; Kim, J. S.
Talanta 2010, 83, 658.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; ,
Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
ASSOCIATED CONTENT
■
S
* Supporting Information
X-ray crystallographic data of cis-1, trans-1, cis-2, and trans-2 in
CIF format. Structures of cis-1, trans-1, cis-2, and trans-2,
titration spectral changes with Hg(II) ion and acid, and other
related DFT and TDDFT results. This material is available free
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
K.M.C.W. acknowledges the receipt of “Young Thousand
Talents Program” award and the start-up fund administrated by
the Organisation Department of CPC Central Committee and
South University of Science and Technology of China,
respectively. We gratefully thank Dr. L. Szeto and Prof. W.T.
Wong for X-ray crystal structure determinations, Dr. J. Weng
for computational studies, and Prof. V.W.W. Yam for access to
13440
dx.doi.org/10.1021/ic401810x | Inorg. Chem. 2013, 52, 13432−13441