146
XU ET AL.
alcohols and aldehydes on these samples will be reported
elsewhere (15).
7. Apesteguia, C. R., Soled, S. L., and Miseo, S., U.S. Patent 5,387,570
(1995). [Assigned to Exxon Research and Engineering Co.]
8. Apesteguia, C. R., DeRites, B., Miseo, S., and Soled, S. L. Catal. Lett.
44, 1 (1997).
9. Tsuji, H., Yagi, F., Hattori, H., and Kita, H., J. Catal. 148, 759
(1994).
CONCLUSIONS
10. Radlowski, C. A., and Hagen, G. P., U.S. Patent 5,159,125. [Assigned
to Amoco Corporation, Chicago]
11. Brideger, G. W., and Spencer, M. S., in “Catalyst Handbook,” 2nd ed.
(M. V. Twigg, Ed.). Wolfe Press, London, 1989.
12. Li, J.-L., and Inui, T., Appl. Catal. A 137, 105 (1996).
13. Iglesia, E., and Boudart, M., J. Catal. 81, 204 (1983).
14. Narita, K., Takeyawa, N., and Toyoshima, I., React. Kinet. Catal. Lett.
19 (1982).
K-promoted Cu0.5Mg5CeOx catalysts are active and se-
lective for isobutanol synthesis from CO/H2 mixtures with
high alcohol-to-hydrocarbon ratios at relatively low tem-
peratures (583 K) and pressures (4.5 MPa). CO2 decreases
the rates of methanol and isobutanol synthesis from CO/H2
–
on catalysts with low Cu concentration (K Cu0.5Mg5CeOx).
Methanol production was not affected by CO2 on catalysts
15. Xu, M., and Iglesia, E. [Unpublished manuscript]
16. Lamonier, C., Bennani, A., Duysser, A., and Wrobel, G., J. Chem. Soc.
Faraday Trans. 92(1), 131 (1996).
17. Soria, J., Solid State Ionics 63–65, 755 (1993).
18. Driscoll, D. J., Martin, W., Wang, J-X., and Lunsford, J. H., J. Am.
Chem. Soc. 107, 58 (1985).
19. Lunsford, J. H., Cisneros, M. D., Hinson, P. G., Tong, Y., and Zhang,
H., Faraday Discuss. Chem. Soc. 87, 1 (1989).
20. King, D. S., and Nix, R. M., J. Catal. 160, 76 (1996).
21. Souza-Monteiro, R., Noronha, F. B., Dieguez, L. C., and Schmal, M.,
Appl. Catal. 131, 89 (1995).
22. Garcia-Fierro, J. L., Lo Jacono, M., Inversi, M., Porta, P., Cioci, F., and
Lavecchia, R., Appl. Catal. 137, 327 (1996).
23. Garcia-Fierro, J. L., Lo Jacono, M., Inversi, M., Porta, P., Lavecchia,
R., and Cioci, F., J. Catal. 148, 709 (1994).
24. Annesini, M. C., Lavecchia, R., Marrelli, L., Lo Jacono, M., Campa,
M. C., Garcia-Fierro, J. L., Moretti, G., and Porta, P., Solid State Ionics
63–65, 281 (1993).
25. Campos-Martin, J. M., Garcia-Fierro, J. L., Guerrero-Ruiz, A.,
Herman, R. G., and Klier, K., J. Catal. 163, 418 (1996).
26. Davydova, L. P., Boreskov, G. K., Popovskii, V. V., Yurieva, T. M., and
Anufrienko, V. F., React. Kinet. Catal. Lett. 18, 203 (1981).
27. Aleksandrov, V. Yu., Popovskii, V. V., and Bulgakov, N. N., React.
Kinet. Catal. Lett. 8, 65 (1978).
–
–
with high Cu (K Cu7.5Mg5CeOx and Cs Cu/ZnO/Al2O3)
because they operate near methanol synthesis equilibrium.
CeO2 is a structural promoter increasing both surface area
and Cu dispersion. The addition of K to CuMgCeOx sam-
plesdecreasesCu surface area and methanolsynthesisrates,
but titrates residual acid sites leading to the undesired for-
mation of dimethylether and hydrocarbons during alcohol
synthesis.
A
13CO2/12CO2 isotopic switch method was used to probe
basic site density and strength and the kinetic availability
of basic sites at temperatures typical of isobutanol synthe-
sis reactions. The addition of K increases basic site den-
sity and strength and the areal rates of aldol condensation
chain growth reactions. Ethanol dehydrogenation reaction
is a structure-insensitive reaction that requires Cu surface
atoms. Cu sites play a critical role in condensation reac-
tion. Alcohol chain growth reactions occur via bifunctional
(metal–base) pathways requiring both Cu and basic sites.
Isotopic tracer and TPSR studies of alcohol coupling reac-
tions suggest that chain growth leading to propionaldehyde
and isobutyraldehyde occurs by condensation reactions in-
volving the addition of a C1 species to adsorbed oxygenates.
28. Xu, M., Hu, Z., Gines, M. J. L., and Iglesia, E. [Unpublished
manuscript]
29. Boudart, M., and Dje´ga-Mariadassou, G., “Kinetics of Heterogeneous
Catalytic Reactions.” Princeton Univ. Press, Princeton, NJ, 1984.
30. DePontes, M., Yokomizo, G. H., and Bell, A. T., J. Catal. 104, 147
(1987).
ACKNOWLEDGMENTS
31. McKenzie, A. L., Fishel, C. T., and Davis, R. J., J. Catal. 138, 547
(1992).
32. Nunan, J. G., Himmelfarb, P. B., Herman, R. G., Klier, K., Bodgan,
C. E., and Simmons, G. W., Inorg. Chem. 28, 3868 (1989).
33. Klier, K., Chatikavanij, V., Herman, R. G., and Simmons, G. W.,
J. Catal. 74, 343 (1982).
34. Vedage, G. A., Himmelfarb, P. B., Simmons, G. W., and Klier, K., ACS
Symp. Ser. 279, 295 (1985).
This work was supported by Division of Fossil Energy, the United States
Department of Energy, under Contract DE-AC22-94PC94066. The au-
thors thanks Mr. Zhengjie Hu for his technical assitance with isotopic
switch experimentsand Dr. Bernard A. Toseland (Air Productsand Chem-
icals, Inc.) for helpful technical discussions and suggestions.
35. Chinchen, G. C., Waugh, K. C., and Whan, D. A., Appl. Catal. 25, 101
(1986).
36. Tronconi, E., Ferlazzo, N., Forzatti, P., and Pasquon, I., Ind. Eng. Chem.
Res. 26, 2122 (1987).
REFERENCES
37. Elliot, D. J., J. Catal. 111, 445 (1988).
1. Keim, W., and Falter, W., Catal. Lett. 3, 59 (1989).
2. Keim, W., D.E. Patent 3810421 (1988).
3. Lietti, L., Forzatti, P., Tronconi, E., and Pasquon, I., J. Catal. 126, 401
(1990).
4. Forzatti, P., Tronconi, E., and Pasquon, I., Catal. Rev. Sci. Eng. 33, 109
(1991).
38. Calverley, E. M., and Smith, K. J., J. Catal. 130, 616 (1991).
39. Xu, M., and Iglesia, E., J. Phys. Chem. [Submitted for publication]
40. Elliot, D. J., and Pennella, F., J. Catal. 119, 359 (1989).
41. Takezawa, N., Hanamaki, C., and Kobayashi, H., J. Catal. 38, 101
(1975).
42. Nunan, J. G., Bogdan, C. E., Klier, K., Smith, K., Young, C., and
Herman, R., J. Catal. 116, 195 (1989).
43. Gines, M. J. L., and Iglesia, E. [Unpublished manuscript]
5. Sofianos, A., Catal. Today 15, 119 (1990).
6. Slaa, J. C., van Ommen, J. G., and Ross, J. R. H., Catal. Today 15, 129
(1992).