SARKHEIL AND LASHANIZADEGAN
7 of 8
TABLE 4 Oxidation of alcohols in the presence of Fe3O4@SiO2‐Schiff base‐Cu(II)a
Entry
Alcohol
Conversion (%)b
Major productc (selectivity, %)
TON/TOF (h−1
)
1
2
3
4
5
Benzyl alcohol
100
86
Benzoic acid (87)
602/100
518/86
380/63
602/100
283/47
3‐Methoxybenzyl alcohol
3‐Chlorobenzyl alcohol
Benzhydrol
3‐Methoxybenzoic acid (85)
3‐Chlorobenzoic acid (84)
Benzophenone (100)
Butanoic acid (100)
63
100
47
n‐Butanol
aReaction conditions: catalyst (0.01 g), alcohol (5 mmol), TBHP (20 mmol), acetonitrile (3 ml), 6 h under reflux.
bDetermined by GC.
cDetermined by GC–MS.
[2] M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911.
various solvents such as acetonitrile, methanol, ethyl acetate
and chloroform on the benzyl alcohol oxidation was also
studied. The results are listed in Table S4 and the best conver-
sion and selectivity are obtained in acetonitrile.
[3] H. Hosseini‐Monfared, E. Pousaneh, S. Sadighian, S. Weng Ng, E. R. T.
Tiekink, Z. Anorg. Allg. Chem. 2013, 639, 435.
[4] P. Gogoi, M. Kalita, T. Bhattacharjee, P. Barman, Tetrahedron Lett. 2014, 55,
1028.
The results of the oxidation of various alcohols, namely
benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl
alcohol, benzhydrol and n‐butanol, under the optimized con-
ditions are presented in Table 4. The major products for oxi-
dation of primary and secondary alcohols are the
corresponding carboxylic acid and ketone, respectively. Also,
the least reactivity is shown by the aliphatic alcohol, and the
presence of electron‐withdrawing and electron‐donating sub-
stituents on the benzene ring may affect the reactivity of the
aromatic alcohols.[41]
[5] A. Ghorbani‐Choghamarani, B. Ghasemi, Z. Safari, G. Azadi, Catal.
Commun. 2015, 60, 70.
[6] S. Menati, H. Amiri‐Rudbari, B. Askari, M. Riahi‐Farsani, F. Jalilian, G.
Dini, C. R. Chim. 2016, 19, 347.
[7] L. Chen, B.‐D. Li, Q.‐X. Xu, D.‐B. Liu, Chin. Chem. Lett. 2013, 24, 849.
[8] S. Shit, D. Saha, D. Saha, T. N. Guru Row, C. Rizzoli, Inorg. Chim. Acta
2014, 415, 103.
[9] G. Romanowski, J. Kira, M. Wera, J. Mol. Catal. A 2014, 381, 148.
[10] G. Romanowski, J. Kira, Polyhedron 2013, 53, 172.
[11] G. Romanowski, J. Kira, Polyhedron 2016, 117, 352.
[12] J. Zhang, P. Jiang, Y. Shen, W. Zhang, X. Li, Micropor. Mesopor. Mater.
2015, 206, 161.
[13] O. Erdem, B. Guzel, Inorg. Chim. Acta 2014, 418, 153.
4
| CONCLUSIONS
[14] A. Mavrogiorgou, M. Papastergiou, Y. Deligiannakis, M. Louloudi, J. Mol.
Catal. A 2014, 393, 8.
A new magnetic catalyst (Fe3O4@SiO2‐Schiff base‐Cu(II))
was synthesized by reacting copper(II) acetate with silica‐
coated magnetite nanoparticles functionalized with Schiff
base groups. The catalytic activity of this catalyst
was evaluated for the oxidation of various alkenes
(styrene, α‐methylstyrene, cyclooctene, cyclohexene and
norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl
alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n‐butanol)
with TBHP as oxidant. Based on the optimized results, the
best catalytic performances were obtained in acetonitrile
using 0.01 g of catalyst. It was found that the catalyst success-
fully catalysed the epoxidation of norbornrne with 82% con-
version and 100% selectivity during 2 h. Also, catalytic
oxidation of benzyl alcohol gave 100% conversion with
87% selectivity for benzoic acid within 6 h. Some advantages
including rather high yield and selectivity, easy separation
and recyclability demonstrate that Fe3O4@SiO2‐Schiff base‐
Cu(II) is an efficient heterogeneous catalyst.
[15] S. Bhunia, S. Koner, Polyhedron 2011, 30, 1857.
[16] F. Heshmatpour, S. Rayati, M. Afghan‐Hajiabbas, B. Neumüller, Z. Anorg.
Allg. Chem. 2011, 637, 1224.
[17] G. Willingh, H. S. Abbo, S. J. J. Titinchi, Catal. Today 2014, 227, 96.
[18] D. R. Godhani, H. D. Nakum, D. K. Parmer, J. P. Mehta, N. C. Desai, J. Mol.
Catal. A 2016, 415, 37.
[19] K. C. Gupta, A. K. Sutar, C.‐C. Lin, Coord. Chem. Rev. 2009, 253, 1926.
[20] R. Antony, S. T. D. Manickam, K. Saravanan, K. Karuppasamy, S.
Balakumar, J. Mol. Struct. 2013, 1050, 53.
[21] A. K. Sutar, T. Maharana, Y. Das, P. Rath, J. Chem. Sci. 2014, 126, 1695.
[22] A. Mavrogiorgou, M. Baikousi, V. Costas, E. Mouzourakis, Y.
Deligiannakis, M. A. Karakassides, M. Louloudi, J. Mol. Catal. A 2016,
413, 40.
[23] M. J. Taghizadeh, H. Karimi, H. Sadeghi‐Abandansari, Res. Chem.
Intermed. 2016, 42, 8201.
[24] Z. Li, S. Wu, H. Ding, D. Zheng, J. Hu, X. Wang, Q. Huo, J. Guan, Q. Kan,
New J. Chem. 2013, 37, 1561.
[25] M. B. Gawande, P. S. Brancoa, R. S. Varma, Chem. Soc. Rev. 2013, 42,
3371.
[26] M. Mohammadikish, M. Masteri‐Farahani, S. Mahdavi, J. Magn. Magn.
Mater. 2014, 354, 317.
ACKNOWLEDGEMENTS
[27] X. Li, Y. Fang, X. Zhou, J. Ma, R. Li, Mater. Chem. Phys. 2015, 156, 9.
[28] X. Cai, H. Wang, Q. Zhang, J. Tong, Z. Lei, J. Mol. Catal. A 2014, 384, 217.
Financial support from Alzahra University is acknowledged.
[29] M. B. Gawande, Y. Monga, R. Zboril, R. K. Sharma, Coord. Chem. Rev.
2015, 288, 118.
REFERENCES
[1] R. G. Sheldon, B. J. Kochi, Metal‐Catalyzed Oxidations of Organic Com-
pounds, Academic Press, New York 1981.
[30] B. Fredrich, W. Gerhartz, Ullmann's Encyclopedia of Industrial Chemistry,
Vol. A3, Wiley‐VCH, Weinheim 1985.