5
1
a) Aartsma-Rus, A. Molecular Therapy 2016, 24, 193. b)
Haussecker, D.; Kay, M. A. Science 2015, 347, 1069.
2
a) Rodriguez, A. A.; Cedillo, I.; McPherson, A. K. Bioorg. Med.
Chem. Lett. 2016, 26, 3468. b) Rodriguez, A. A.; Cedillo, I.;
Mowery, B. P.; Gaus, H. J.; Krishnamoorthy, S. S.; McPherson, A.
K. Bioorg. Med. Chem. Lett. 2014, 24, 3243. c) Rentel, C.; Wang, X.
Batt, M.; Kurata, C.; Oliver, J.; Gaus, H.; Krotz, A. H.; McArdle, J.
V.; Capaldi, D. C. J. Org. Chem. 2005, 70, 7841. d) Capaldi, D. C.;
Gaus, H. J.; Carty, R. L.; Moore, M. N.; Turney, B. J.; Decottignies,
S. D.; McArdle, J. V.; Scozzari, A. N.; Ravikumar, V. T.; Krotz, A.
H. Bioorg. Med. Chem. Lett. 2004, 14, 4683. e) Capaldi, D. C.; Gaus,
H.; Krotz, A. H.; Arnold, J.; Carty, R. L.; Moore, M. N.; Scozzari, A.
N.; Lowery, K.; Cole, D. L.; Ravikumar, V. T. Org. Process Res.
Dev. 2003, 7, 832.
3
For other examples of support-bound linkers see: a) Wang, Z.;
Olsen, P.; Ravikumar, V. T. Nucleosides, Nucleotides, and Nucleic
Acids 2007, 26, 259. b) Anderson, K. M.; Jaquinod, L.; Jensen, M.
A.; Ngo, N.; Davis, R. W. J. Org. Chem. 2007, 72, 9875. c) Ferreira,
F.; Meyer, A.; Vasseur, J.-J.; Morvan, F. J. Org. Chem. 2005, 70,
9198. d) Kumar, P.; Mahajan, S.; Gupta, K. C. J. Org. Chem. 2004,
69, 6482. e) Azhayev, A. V.; Antopolsky, M. L. Tetrahedron 2001,
57, 4977. f) Nelson, P. S.; Muthini, S.; Vierra, M.; Acosta, L.; Smith,
T. M. BioTechniques 1997, 22, 752.
4 For representative HPLC trace see supporting information.
5 1H NMR (300 MHz) δ 7.55-7.38 (m, 6H), 7.20 (d, J = 6.0 Hz, 4H),
4.92 (broad s, 2H), 4.78 (s, 2H), 4.40 (s, 2H), 4.07 (d, J = 7.0 Hz,
2H), 3.94 (d, J = 7.0 Hz, 2H), 3.15 (q, J = 74.5 Hz, 4H). 13C NMR
(75 MHz) δ 176.0, 132.2, 128.9, 126.7, 84.8, 82.0, 80.6, 73.0, 45.8.
6
For review see: a) Pilgram, B. S.; Donohoe, T. J. J. Org. Chem.
2013, 78, 2149. b) Piccialli, V. Synthesis 2007, 17, 2585
7 a) McDonald, F. E.; Towne, T. B.; Schultz, C. C. Pure Appl. Chem.
1998, 70, 355-358. b) Keinan, E.; Sinha, S. C. Pure Appl. Chem.
2002, 74, 93-105. c) Piccialli, V. Molecules 2014, 19(5), 6534-6582.
d) Morimoto, Y.; Kinoshita, T.; Iwai, T. Chirality 2002, 14, 578-586.
e) McDonald, F. E.; Towne, T. B. J. Am. Chem. Soc. 1994, 116,
7921-7922.
8
Donohoe, T. J.; Wheelhouse, K. M. P.; Lindsay-Scott, P. J.;
Glossop, P. A.; Nash, I. A.; Parker, J. S. Angew. Chem., Int. Ed.
2008, 47, 2872–2875.
9
The alkene 6 (10.00 g, 41.45 mmol) was suspended in 85 mL of
acetone, and a solution of 50% aqueous NMO (2.5 equiv., 21.49 mL,
103.6 mmol) was added resulting in a biphasic slurry of alkene. A
solution of OsO4 in tBuOH (0.02 M, 2.07 mL, 0.001 equiv.) was
added and the reaction mixture brought to reflux. As the solution
begins to reflux the layers coalesce and the alkene fully dissolves (~5
min.); the diol then precipitates from solution as it is formed. Reflux
is continued until the starting material is consumed at which point the
solution is cooled to room temperature, quenched with saturated
aqueous sodium thiosulfate (50 mL), and the diol collected by
filtration. The solid was washed with H2O (50 mL) and acetone (100
mL), collected, and dried under vacuum to afford diol 9 (10.22 g,
90% yield).
1H NMR (300 MHz) δ 7.55-7.38 (m, 3H), 7.25-7.18 (m, 2H), 5.03 (s,
2H), 4.41 (s, 2H), 3.97 (s, 2H), 3.17 (s, 2H). 13C NMR (75 MHz) δ
176.2, 132.2, 128.9, 128.4, 126.8, 84.1, 71.8, 45.5.