C O M M U N I C A T I O N S
Table 2. Enantioselective Cyanosilylation of Ketones Catalyzed
by 3da
racemic and enantiomerically enriched products. This material is
References
(1) (a) Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley: New
York, 2000; Vols. 1 and 2. (b) ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999.
(2) Reviews: (a) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289-296. (b)
Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062-2064. See also: (c)
Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424,
146. (d) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125,
12094-12095.
(3) Reviews: (a) Shan, S.-O.; Herschlag, D. Methods Enzymol. 1999, 308,
246-276. (b) Schowen, K. B.; Limbach, H.-H.; Denisov, G. S.; Schowen,
R. L. Biochim. Biophys. Acta 2000, 1458, 43-62.
(4) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-
4902. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2000, 39, 1279-1281. (c) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000,
2, 867-890. (d) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
124, 10012-10014.
(5) (a) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964-
12965. (b) Wenzel, A. G.; Lalonde, M. P.; Jacobsen, E. N. Synlett 2003,
1919-1922.
(6) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102-4103.
(7) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466-468.
(8) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-
10559.
(9) See also: (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.
2003, 124, 12672-12673. (b) Okino, T.; Nakamura, S.; Furukawa, T.;
Takemoto, Y. Org. Lett. 2004, 6, 625-627.
(10) (a) Curran, D. P.; Kuo, L. H. J. Org Chem. 1994, 59, 3259-3261; (b)
Tetrahedron Lett. 1995, 36, 6647-6650.
(11) (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217-220. (b)
Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407-414.
(12) Dynamic kinetic resolution of azlactones: (a) Berkessel, A.; Cleemann,
F.; Mukherjee, S.; Mu¨ller, T. N.; Lex, J. Angew. Chem., Int. Ed. 2005,
44, 807-811. (b) Berkessel, A.; Mukherjee, S.; Cleemann, F.; Mu¨ller, T.
N.; Lex, J. Chem. Commun. 2005, 1898-1900. Enantioselective Baylis-
Hillman reactions: (c) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.;
Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589-5592. Enantioselective
arenethiol 1,4 additions to R,â-unsaturated imides: (d) Li, B.-J.; Jiang,
L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603-606.
Nitromethane addition to chalcones: (e) Vakulya, B.; Varga, S.; Csampai,
A.; Soos, T. Org. Lett. 2005, 7, 1967-1969.
(13) For a review on the synthetic utility of cyanohydrins see: Gregory, R. J.
a Reactions were carried out on a 1.0 mmol scale with 2.2 equiv of
TMSCN and 1.0 equiv of CF3CH2OH in 2.0 mL of CH2Cl2. b Isolated yield
after silica gel chromatography. c Determined by chiral GC or chiral HPLC
H. Chem. ReV. 1999, 99, 3649-3682.
(14) For an excellent recent review on the catalytic asymmetric cyanation of
aldehydes and ketones see: Brunel, J.-M.; Holmes, I. P. Angew. Chem.,
Int. Ed. 2004, 43, 2752-2778.
d
(see Supporting Information). Reaction carried out on 10 mmol scale.
e Reaction carried out using 10 mol % catalyst. f Reaction carried out with
2.7 equiv of TMSCN and 1.5 equiv of CF3CH2OH.
(15) (a) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M.; Parsons, T.;
Tararov, V. I. Tetrahedron 2001, 57, 771-779. (b) Hamashima, Y.; Kanai,
M.; Shibasaki M. J. Am. Chem. Soc. 2000, 122, 7412-7413. (c) Yabu,
K.; Masumoto, S.; Yamasaki, S.; Hamashima, Y.; Kanai M.; Du, W.;
Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9908-9909.
(d) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. M. Angew. Chem.,
Int. Ed. 2002, 41, 1009-1012. (e) Chen, F.; Feng, X.; Qin, B.; Zhang,
G.; Jiang, Y. Org. Lett. 2003, 5, 949-952.
practical potential of this catalyst system, the cyanosilylation of
2′-methylacetophenone was carried out on 10 mmol scale (96%
yield, 98% ee) and the catalyst recovered in 96% yield by silica
gel chromatography (entry 4).
(16) (a) Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195-6196. (b)
Tian, S.-K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900-
9901.
(17) Riu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 5384-5387.
High enantioselectivities have been obtained only in cyanosil-
ylation of carbonyl substrates bearing one sp2-hybridized substitu-
ent.22 While the mechanism of catalysis with 3d remains under
investigation, electronic, rather than steric, differentiation of the
two ketone substituents is implicated strongly as the source of
asymmetric induction (compare entries 1-3 and 14-15).23 The
critical role of the Brønsted basic amine moiety in combination
with the thiourea unit suggests a cooperative mechanism for 3d
involving simultaneous nucleophile and electrophile activation.24
Thiourea 3d represents one of the most effective and general
carbonyl cyanation catalysts identified to date. Current work is
directed toward elucidating the mechanism of carbonyl activation
and discovering other carbonyl addition reactions catalyzed by chiral
thiourea derivatives.
(18) For a complete list of all urea and thiourea catalysts examined see the
Supporting Information.
(19) The role of the alcohol additive is presumably to generate HCN as the
active nucleophile in the addition reaction, as is the case in thiourea-
catalyzed Strecker reactions (ref 4). For other examples of the beneficial
effect of alcohol additives on cyanosilylation of carbonyls see: (a) Hayashi,
M.; Matsuda, N.; Oguni, N. J. Chem. Soc., Perkin Trans. 1 1992, 3135-
3140. (b) Brunel, J. M.; Legrand, O.; Buono, G. Tetrahedron: Asymm.
1999, 10, 1979-1984. (c) Reference 15d.
(20) The corresponding N,N-di-n-butylamine- and N,N-di-n-pentylamine-
substituted catalysts afforded comparable conversion to 3d, but with
slightly lower enantioselectivity (95%).
(21) For the preparation of 3d, see the Supporting Information.
(22) Dialkyl ketones are poor substrates in cyanosilylation reactions with 3d:
2-heptanone, 11% ee; cyclohexyl methyl ketone, <5% conversion.
(23) Ketone enantioface selectivity dictated solely by electronic differentiation
is well-precedented: (a) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1995,
36, 9153-9156. (b) Masumoto, S.; Suzuki, M.; Kanai, M.; Shibasaki, M.
Tetrahedron 2004, 60, 10497-10504.
Acknowledgment. This work was supported by the NIGMS
through GM-43214 and P50 GM069721. We thank Mark S. Taylor
for helpful discussions.
(24) The cyclohexylamine-derived analogue of 3d, which lacks the tertiary
amine group, displayed no reactivity under the standard conditions.
Supporting Information Available: Complete experimental pro-
cedures, characterization data, and chiral chromatographic analyses of
JA052511X
9
J. AM. CHEM. SOC. VOL. 127, NO. 25, 2005 8965