Lyubimov et al.
1600
Russ. Chem. Bull., Int. Ed., Vol. 69, No. 8, August, 2020
4. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D.
Srivastava, Int. J. Greenhouse Gas Control, 2008, 2, 9.
5. S. Dabral, T. Schaub, Adv. Synth. Catal., 2019, 361, 223.
6. C. Calabrese, F. Giacalone, C. Aprile, Catalysts, 2019, 9, 325.
7. A. J. Kamphuis, F. Picchioni, P. P. Pescarmona, Green Chem.,
2019, 21, 406.
8. B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P.
Zhang, S.-J. Zhang, Green Chem., 2015, 17,108.
9. R. L. Vekariya, J. Mol. Liq., 2017, 227, 44.
10. S. Zhang, X. Qi, X. Ma, L. Lu, Y. Deng, J. Phys. Chem. B,
2010, 114, 3912.
11. S. M. S. Chauhan, P. Kumari, S. Agarwal, Synthesis, 2007,
23, 3713.
12. M. Bekhouche, L. J. Blum, B. Doumeche, ChemCatChem,
2011, 3, 875.
13. S. K. Panja, B. Haddad, M. Debdab, J. Kiefer, Y. Chaker,
S. Bresson, A. Paolone, ChemPhysChem, 2019, 20, 936.
14. T. Niemann, A. Strate, R. Ludwig, H. J. Zeng, F. S. Menges,
M. A. Johnson, Angew. Chem., Int. Ed., 2018, 57, 15364.
15. J. Sun, S. Zhang, W. Cheng, J. Ren, Tetrahedron Lett., 2008,
49, 3588.
process is highly sensitive to temperature, with the carbon
dioxide pressure having lower effect on its rate.
Experimental
1H, 13С, and 19F NMR spectra were recorded on a Bruker
Avance 400 instrument (400.13, 100.61, and 376.5 MHz, respec-
tively). The following agents were commercially available: silica
gel (0.06—0.2 mm, 60 Å, Acros Organics), TiO2, Al2O3, triethyl-
amine, 1-methylimidazole, pyridine, 3-chloropropan-1-ol,
2-chloroethan-1-ol, 7-oxabicyclo[4.1.0]heptane (4), 2-methyl-
oxirane (6a), 2-(chloromethyl)oxirane (6b), 2-(phenoxymethyl)-
oxirane (6f), 2-phenyloxirane (6i), 2,2´-[4,4´-(propane-2,2-
diyl)bis(4,1-phenylene)]bis(oxy)bis(methylene)dioxirane (9,
ED-22 resin) (all from Aldrich). 2-(Fluoromethyl)oxirane (6c),
2-(2,2,2-trifluoroethyl)oxirane (6d), 2-(pentafluorophenyl-
methyl)oxirane (6e), N,N-diethyl-2-oxiranemethanamine (6g),
and 4-(oxiran-2-ylmethyl)piperidine (6h) were synthesized
according to the known procedures.23—27
Triethyl(3-hydroxypropyl)ammonium chloride (1). 3-Chloro-
propan-1-ol (0.5 g, 5.3 mmol) and triethylamine (1.0 mL,
7 mmol) were placed into a 10-mL autoclave, and the mixture
was heated at 130 С for 1 h. Then, the autoclave was cooled to
room temperature, the excess of triethylamine was decanted, the
residue was washed with diethyl ether (2×2 mL) and vacuum
dried. The yield was 0.633 g (61%), a yellowish powder. The
spectral characteristics agreed with those published earlier.11
Synthesis of salts 2a,b and 3 (general procedure). The cor-
responding amine (5.0 mmol) and alcohol were placed into
a 10-mL flat-bottom flask, and the mixture was refluxed for 1 h
with stirring. Then benzene (2 mL) was added to the mixture to
extract impurities and unreacted starting compounds. The solvent
was decanted, the products were additionally washed with di-
ethyl ether (2×2 mL) and vacuum dried. The yields were 94—96%.
The spectral characteristics of 1-(3-hydroxypropyl)-3-methyl-
imidazolium chloride (2a), 1-(2-hydroxyethyl)-3-methylimid-
azolium chloride (2b), and 1-(3-hydroxypropyl)pyridinium
chloride (3) correspond to those published earlier.12—14
16. S. Zhang, J. Sun, W. Cheng, J. Wang, J. Zhang, Z. Fu,
Z. Zhang, Pat. US 2013072727 (A1).
17. G. N. Bondarenko, E. G. Dvurechenskaya, O. G. Ganina,
F. Alonso, I. P. Beletskaya, Appl. Catal., B, 2019, 254, 380.
18. S. E. Lyubimov, M. V. Sokolovskaya, B. Chowdhury, A. V.
Arzumanyan, R. S. Tukhvatshin, L. F. Ibragimova, A. A.
Tyutyunov, V. A. Davankov, A. M. Muzafarov, Russ. Chem.
Bull., 2019, 68, 1866.
19. S. E. Lyubimov, A. A. Zvinchuk, M. V. Sokolovskaya, V. A.
Davankov, B. Chowdhury, P. V. Zhemchugov, A. V. Arzu-
manyan, Appl. Catal., A, 2020, 592, 117433.
20. A. S. Nair, S. Cherian, N. Balachandran, U. G. Panicker, S.
K. K. Sankaranarayanan, ACS Omega, 2019, 4, 13042.
21. J.-Z. Hwang, S.-C. Wang, P.-C. Chen, C.-Y. Huang, J.-T.
Yeh, K.-N. Chen, J. Polym. Res., 2012, 19, 9900.
22. J. Nanclares, Z. S. Petrovic, I. Javni, M. Ionescu, F. Jaramillo,
J. Appl. Polym. Sci., 2015, 132, 42492.
23. J. Jindrich, H. Dvorakova, A. Holy, Collect. Czech. Chem.
Commun., 1992, 57, 1466.
patent/US20040147789A1/en.
25. F. Chen, T. Dong, T. Xu, X. Li, C. Hu, Green Chem., 2011,
13, 2518.
26. J. Blankenburg, M. Wagner, H. Frey, Macromolecules, 2017,
50, 8885.
Synthesis of carbonates 5, 7а—i, and 9 from epoxides (gen-
eral procedure). A corresponding ammonium salt (0.015 mmol)
was placed into a 10-mL autoclave, followed by the addition of
an epoxide (3 mmol). The autoclave was filled with CO2 (20 or
56 atm.) and heated in a thermostat at 120 or 130 С (see Table 1)
for 24 h. After the completion of the process, the autoclave was
cooled to room temperature, excess CO2 pressure was vented,
and the residue was analyzed by 1H NMR spectroscopy. The
spectral characteristics of carbonates 5, 7a—i, and 9 correspond
to those published earlier.18,21,25,28—31
27. S. T. K. Kumar, L. Kumar, V. L. Sharma, A. Jain, R. K. Jain,
J. P. Maikhuri, M. Kumar, P. K. Shukla, G. Gupta, Eur. J.
Med Chem., 2008, 43, 2247.
28. Z. Zhao, J. Qin, C. Zhang, Y. Wang, D. Yuan, Y. Yao, Inorg.
Chem., 2017, 56, 4568.
This work was financially supported by the Russian
Science Foundation (Project No. 19-43-02031).
29. P. A. Carvalho, J. W. Comerford, K. J. Lamb, M. North,
P. S. Reiss, Adv. Synth. Catal., 2019, 361, 345.
30. Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, T. Sakai,
Org. Lett., 2010, 12, 5728.
31. V. Legros, G. Taing, P. Buisson, M. Schuler, S. Bostyn, J. Rou-
sseau, C. Sinturel, A. Tatibouet, Eur. J. Org. Chem., 2017, 5032.
References
1. M. Aghaie, N. Rezaei, S. Zendehboudi, Renewable Sustainable
Energy Rev., 2018, 96, 502.
2. M. Ramdin, T. W. de Loos, T. J. H. Vlugt, Ind. Eng. Chem.
Res., 2012, 51, 8149.
3. G. P. Peters, R. M. Andrew, J. G. Canadell, P. Friedlingstein,
R. B. Jackson, J. I. Korsbakken, C. Le Quere, A. Peregon,
Nat. Clim. Change, 2020, 10, 2.
Received March 13, 2020;
in revised form May 22, 2020;
accepted June 1, 2020