K. E6eraere et al. / Tetrahedron Letters 42 (2001) 1899–1901
1901
virtually quantitative yield and 96% ee (entry 9).† The
References
same reaction was much less enantioselective when
Ru-2 was used as the catalyst (entry 10); this is rather
surprising since equivalent Ru-b-amino alcohol in situ
combinations have been shown to reduce 2-
acetylpyridine in up to 92% ee and their enantioselec-
tive performance not to be significantly affected by a
variety of alkoxycarbonyl functions.23,25 The reduction
of methyl 2-pentanoylbenzoate (3c), readily prepared in
40% overall yield from the reaction of phtalic anhy-
dride with di-n-butylcadmium, followed by subsequent
esterification of the crude acid with the CH3I/K2CO3
combination, provides the valuable1–5 (S)-3-n-butylph-
talide (4c). Catalyst Ru-1 afforded 4c quite sluggishly in
90–92% ee (entries 11–12), while Ru-2 proved again to
be more active but less enantioselective (entries 13–14).
The decrease in enantioselectivity observed with both
catalysts Ru-1 and Ru-2 going from 3a to 3c stems
from the larger steric crowding of the n-butyl group
compared to a methyl group. The idea that the enan-
tioselectivity of the reaction is driven by the steric
difference between the substituents that flank the
ketone is supported by the results obtained in the
reduction of methyl 2-benzoylbenzoate (3d); in this
case, the steric demand between flanking aromatic
groups is low and 3-phenylphtalide (4d) was recovered
with very low ee’s (entries 15–16).
1. Zheng, G. Q.; Kenney, P. M.; Zhang, J.; Lam, L. K.
Nutr. Cancer 1993, 19, 77–86.
2. Kobayashi, S.; Mimura, Y.; Notaya, K.; Kimura, I.;
Kimura, M. Jpn. J. Pharmacol. 1992, 60, 397–401.
3. Yu, S.; You, S.; Chen, H. Yaoxue Xuebao 1984, 19,
486–490. Chem. Abstr. 1984, 101, 222490c.
4. Sato, H.; Yorozu, H.; Yamaoka, S. Biomed. Res. 1993,
14, 385–390.
5. Ogawa, Y.; Hosaka, K.; Kubota, K.; Chin, M. Jap. Pat.
0477,480. Chem. Abstr. 1992, 117, 69721n.
6. Elander, M.; Leander, K.; Luning, B. Acta Chem. Scand.
1969, 23, 2177–2180.
7. Hung, T. V.; Mooney, B. A.; Prager, R. H.; Tippett, J.
M. Aust. J. Chem. 1981, 34, 383–395.
8. Meyers, A.; Hanagan, M. A.; Trefonas, L. M.; Baker, R.
J. Tetrahedron 1983, 39, 1991–1999.
9. Alexakis, A.; Sedrani, R.; Normant, J.-F.; Mangeney, P.
Tetrahedron: Asymmetry 1990, 1, 283–286.
10. Takahashi, H.; Tsubuki, T.; Higashiyama, K. Chem.
Pharm. Bull. 1991, 39, 3136–3139.
11. Olivero, A. G.; Weidmann, B.; Seebach, D. Helv. Chim.
Acta 1981, 64, 2485–2488.
12. Soai, K.; Hori, H.; Kawahara, M. Tetrahedron: Asymme-
try 1992, 2, 253–254.
13. Watanabe, M.; Hashimoto, N.; Araki, S.; Butsugan, Y.
J. Org. Chem. 1992, 57, 742–744.
In conclusion, we have demonstrated that the ruthe-
nium-catalyzed transfer hydrogenation of 2-acyl aryl-
carboxylates in 2-propanol under neutral conditions is
an excellent method for the synthesis of optically active
3-alkyl-phtalides. Further applications of these well-
defined Ru catalysts in which undesirable reactions due
to basic conditions can be prevented are currently
under investigation.
14. Kitayama, T. Tetrahedron: Asymmetry 1997, 8, 3765–
3774.
15. Ogawa, Y.; Hosaka, K.; Chin, M.; Mitsuhashi, H. Hete-
rocycles 1989, 29, 865–872.
16. Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetra-
hedron Lett. 1996, 37, 2205–2208.
17. Ohkuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett.
1990, 31, 5509–5512.
18. Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999,
10, 2045–2061.
Acknowledgements
19. Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30,
97–102.
20. Koike, T.; Murata, K.; Ikariya, T. Org. Lett. 2000, 2,
3833–3836.
We thank PPG-SIPSY for a Ph.D. grant to K.E. and
Dr. M. Bulliard for stimulating discussions.
21. Takehara, J.; Hashiguchi, S.; Fujii, A.; Shin-ichi, I.;
Ikariya, T.; Noyori, R. Chem. Commun. 1996, 233–234.
22. Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noy-
ori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285–288.
23. Everaere, K.; Mortreux, A.; Bulliard, M.; Brussee, J.; van
der Gen, A.; Nowogrocki, G.; Carpentier, J.-F. Eur. J.
Org. Chem. 2001, 275–291.
24. The 3-methoxy analogue of 5a has been prepared from
2-acetyl-benzoic anion and methanol in the presence of
sodium methoxide: (a) Anvia, F.; Bowden, K.; Kaissi, F.
A.; Saez, V. J. Chem. Soc., Perkin Trans. 2 1990, 1809–
1814; (b) Weeks, D. P.; Crane, J. P. J. Org. Chem. 1973,
38, 3375–3379; (c) Jones, P. R.; Desio, P. J. J. Org. Chem.
1965, 30, 4293–4295.
† In a typical experiment, a solution of 2-propyl 3-acetylpyridine-2-
carboxylate (3b) (414 mg, 2.0 mmol; previously recrystallized from
petroleum ether) in dry freshly distilled 2-propanol (20 mL) was
transfered via canula under nitrogen in a Schlenk tube containing
complex Ru-122 (12 mg, 0.02 mmol). The resulting solution was
placed in an oil bath at 50°C and stirred with a magnetic bar; the
solution initially purple red turned progressively yellow. After 1 h,
the reaction mixture was exposed to air and cooled to room
temperature. GLC analysis using a BPX5 and a Chirasil-DEX CB
capillary column showed complete conversion of 3b to 4b with an
enantiomeric excess of 96%. After evaporation of volatiles under
vacuum the crude product was purified by column chromatography
(silica, Et2O–heptane) to provide 269 mg (90%) of a white powder;
[h]2D0 −46 (c 0.35, CHCl3); 1H NMR (CDCl3) l 8.87 (d, J=3.7 Hz,
1H), 7.86 (d, J=7.8 Hz, 1H), 7.56 (dd, J=4.7 and 7.8 Hz, 1H), 5.61
(q, J=6.7 Hz, 1H), 1.66 (d, J=6.7 Hz, 3H); 13C NMR (CDCl3) l
25. Everaere, K.; Mortreux, A.; Bulliard, M.; Carpentier,
J.-F. Tetrahedron: Asymmetry 1999, 10, 4083–4086.
167.9, 152.2, 144.8, 143.9, 130.5, 127.2, 75.8, 19.8.
.