ABDEL RAHMAN ET AL.
11 of 12
[
7] A. M. Atta, N. O. Shaker, N. E. Maysour, Prog. Org. Coat. 2006,
5
5
| CONCLUSION
6, 100.
[8] J. H. Jia, X. M. Tao, Y. J. Li, W. J. Sheng, Chem. Phys. Lett. 2011,
14, 114.
The imine ligand was synthesized by the condensation
of 2‐amino‐3‐hydroxypyridine with 3‐methoxys-
5
alicylaldehyde. The analytical data elucidates that the
complexes have 1:1 (metal: ligand) stoichiometry.
Conductivity measurements manifest their non‐electro-
[9] A. M. Abu‐Dief, M. S. M. Abdelbaky, D. Martínez‐Blanco, Z.
Amghouz, S. García‐Granda, Materials Chem. Physics 2016,
174, 164.
lytic kind. LH ligand coordinates with the metal ions
[10] A. M. Abu‐Dief, I. F. Nassar, W. H. Elsayed, Appl. Organometal.
Chem. 2016, 30, 917.
2
through the pyridyl‐O, hydroxyl‐O and azomethine‐N.
1
The H‐NMR data offer that the imine ligand
[11] S. Kumar, D. N. Dhar, P. N. Saxena, J. Sci. Ind. Res. 2009, 68,
deprotonated after complexation. Thermal data manifest
degradation mode of the complexes. Thermo gravimetric
mode of the complexes also assisted to describe the com-
plexes. Nano‐sized complexes were attained by ultrasonic
irradiation in ethyl alcohol solution, and characterized by
physico‐chemical, XRD and TEM technicalities. Calcina-
tion under air of complexes outputs nano‐sized metal
oxides. The results of nanoparticle size measurement of
specimens by XRD and TEM manifest that the size of
the CuO, Co O and NiO nanoparticles was about 16‐
181.
[12] K. C. Emregül, E. Düzgün, O. Atakol, Corr. Sci. 2006, 48, 3243.
[
[
[
[
[
[
[
13] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A.
Kahn, Adv. Mater. 2012, 24, 5408.
14] M. T. Greiner, M. G. Helander, W.‐M. Tang, Z.‐B. Wang, J. Qiu,
Z.‐H. Lu, Nat. Mater. 2012, 11, 76.
15] H. You, Y. Dai, Z. Zhang, D. Ma, J. Appl. Phys. 2007, 101,
026105.
16] M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A.
3
4
Kahn, Appl. Phys. Lett. 2009, 95, 123301.
4
6 nm Moreover, the imine complexes and their corre-
17] J. Meyer, M. Kroger, S. Hamwi, F. Gnam, T. Riedl, W.
sponding metal oxides were manifested semiconductor
pattern. The kind of metal has significant effect on the
electrical resistivity of the complex. The conduction
mechanism in the complexes is controlled by intra‐ and
inter‐molecular mechanisms of the charge carrier trans-
fer. In the CuO, Co O and NiO nanoparticles, the ther-
Kowalsky, A. Kahn, Appl. Phys. Lett. 2010, 96, 193302.
18] J. Manna, G. Begum, K. Pranay Kumar, S. Misra, R. K. Rana,
ACS Appl. Mater. Interfac. 2013, 5, 4457.
19] L. H. Abdel‐Rahman, A. M. Abu‐Dief, R. M. El‐Khatib, S. M.
Abdel‐Fatah, Bioorg. Chem. 2016, 69, 140.
3
4
mal activation conduction predominates. The charge
carrier hopping mechanism is responsible of the conduc-
tion in the CuO and Co O nanoparticles while the con-
duction in NiO nanoparticles is caused by small polaron
hopping.
[20] L. H. Abdel‐Rahman, A. M. Abu‐Dief, S. K. Hamdan, A. A.
Seleem, Int. J. Nano. Chim. 2015, 1, 65.
[21] L. H. Abdel‐Rahman, A. M. Abu‐Dief, M. S. S. Adam, S. K.
Hamdan, Catal. Lett. 2016, 146, 1373.
3
4
[22] S. A. Ahmed, E. M. M. Ibrahim, S. A. Saleh, Appl. Physics. A.
2006, 85,177.
[
[
23] L. H. Abdel‐Rahman, A. M. Abu‐Dief, R. M. El‐Khatib, S. M.
Abdel‐Fatah, J. Photochem. Photobiol. B. 2016, 162, 298.
ORCID
24] L. H. Abdel‐Rahman, R. M. El‐Khatib, L. A. E. Nassr, A. M.
Abu‐Dief, F. E.‐D. Lashin, Spectrochim. Acta. A. 2013, 111, 266.
[25] A. M. Abu‐Dief, L. A. E. Nassr, J. Iran. Chem. Soc. 2015, 12, 943.
REFERENCES
[26] A. M. Abu‐Dief, R. Díaz‐Torres, E. C. Sañudo, L. H. Abdel‐
Rahman, N. A. Alcalde, Polyhedron 2013, 64, 203.
[
1] L. H. Abdel‐Rahman, R. M. El‐Khatib, L. A. E. Nassr, A. M.
Abu‐Dief, J. Mol. Struct. 2013, 1040, 9.
[
[
[
[
[
27] L. H. Abdel‐Rahman, A. M. Abu‐Dief, N. M. Ismail, M. Ismael,
[
2] L. H. Abdel‐Rahman, R. M. El‐Khatib, L. A. E. Nassr, A. M.
Abu‐Dief, M. Ismail, A. A. Seleem, Spectrochim. Acta. A. 2014,
Inorg. and Nano‐Metal Chem. 2017, 47, 467.
28] H. Abdel‐Rahman, A. M. Abu‐Dief, M. Ismael, M. A. A.
Mohamed, N. A. Hashem, J. Mol. Struct. 2016, 1103, 232.
1
17, 366.
[
[
[
[
3] A. M. Abu‐Dief, I. M. A. Mohamed, Beni‐Suef Univ. J. Basic
Appl. Sci. 2015, 4, 119.
29] R. A. Kusanur, M. Ghate, M. V. Kulkarni, J. Chem. Sci. 2004,
116, 265.
4] L. H. Abdel‐Rahman, A. M. Abu‐Dief, E. F. Newair, S. K.
Hamdan, J. Photochem. Photobiol. B. 2016, 160, 18.
30] L. H. Abdel‐Rahman, N. M. Ismail, M. Ismael, A. M. Abu‐Dief,
E. Abdel‐Hameed Ahmed, J. Mol. Struct. 2017, 1134, 851.
5] L. H. Abdel‐Rahman, A. M. Abu‐Dief, H. Mostafa, S. K.
Hamdan, Appl. Organometal. Chem. 2017, 31, e3555.
31] L. H. Abdel‐Rahman, R. M. El‐Khatib, L. A. E. Nassr, A. M.
Abu‐Dief, Arab. J. Chem. 2017, 10, S1835.
6] A. S. Mocanu, M. Ilis, F. Dumitrascu, M. Ilie, V. Circu, Inorg.
Chim. Acta. 2010, 363, 729.
[32] L. H. Abdel Rahman, A. M. Abu‐Dief, N. A. Hashem, A. A.
Seleem, Int. J. Nano. Chem. 2015, 1, 79.