4
-AMINO-5-PYRIMIDINECARBONITRILES
2013
REFERENCES
1. (a) Awadallah, F. M.; M u¨ ller, F.; Lehmann, A. H.; Abadi, A. H. Synthesis of novel
lactam derivatives and their evaluation as ligands for the dopamine receptors, leading
4
to a D -selective ligand. Bioorg. Med. Chem. 2007, 15, 5811–5818; (b) Bagley, M. C.;
Davis, T.; Dix, M. C.; Rokicki, M. J.; Kipling, D. Rapid synthesis of VX-745: p38
MAP kinase inhibition in Werner syndrome cells. Bioorg. Med. Chem. Lett. 2007, 17,
5
107–5110.
0
0
2
. Hassan, N. A. Syntheses of furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines and furo[2 ,3 :
5,6]-pyrimido[3,4-b][2,3-e]indolo[1,2,4]triazine as a new ring system. Molecules 2000, 5,
827–834.
3. Smith, P. A. S.; Kan, R. O. Cyclization of isothiocyanates as a route to phthalic and
homophthalic acid derivatives. J. Org. Chem. 1964, 29, 2261–2265.
4. Vega, S.; Alonso, J.; Diazj, J. A.; Junquere, F. Synthesis of 3-substituted-4-phenyl-
2-thioxo-1,2,3,4,5,6,7,8-octahydrobenzo[4,5]thieno[2,3-d]pyrimidines. J. Heterocycl. Chem.
1990, 27, 269–273.
5
6
7
. Shishoo, C. J.; Jain, K. S. Synthesis of some novel azido=tetrazolothienopyrimidines and
their reduction to 2,4-diaminothieno[2,3-d]pyrimidines. J. Heterocycl. Chem. 1992, 29,
883–893.
. (a) Li, C. J.; Chan, T.-H. Organic Reactions in Aqueous Media; John Wiley & Sons: New
York, 1997; (b) Li, C. Organic reactions in aqueous media with a focus on carbon–carbon
bond formations: A decade update. J. Chem. Rev. 2005, 105, 3095–3166.
. (a) Rideout, D. C.; Breslow, R. L. Hydrophobic acceleration of Diels–Alder reactions. J.
Am. Chem. Soc. 1980, 102, 7816–7817; (b) Reichardt, C. Solvent and Solvent Effects in
Organic Chemistry; Chemie: Weinheim, 1979; p. 1; (c) Rispens, T.; Engberts, J. B. F. N.
Micellar catalysis of Diels–Alder reactions: Substrate positioning in the micelle. J. Org.
Chem. 2002, 67, 7369–7377; (d) Blake, J. F.; Jorgensen, W. L. Solvent effects on
a Diels–Alder reaction from computer simulations. J. Am. Chem. Soc. 1991, 113, 7430–
7432.
8
9
. Yadav, J. S.; Swami, T.; Reddy, B. V. S.; Krishna Rao, D. Organic synthesis in water:
Green protocol for the conjugate addition of thiols to p-quinones. J. Mol. Catal. A: Chem.
2007, 274, 116–119.
. Wu, J. J.; Liu, S. C. Catalyst-free growth and characterization of ZnO nanorods. J. Phys.
Chem. B 2002, 106, 9546–9551.
0. Gao, P. X.; Ding, Y.; Wang, Z. L. Crystallographic orientation-aligned ZnO nanorods
1
1
1
grown by a tin catalyst. Nano. Lett. 2003, 3, 1315–1320.
1. Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO
nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006.
2. (a) Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Hekmat Shoar, R.; Bamoharram, F. F.
Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimida-
zoles. Catal. Commun. 2008, 9, 504–507; (b) Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.;
Hekmat Shoar, R.; Bamoharram, F. F. The synthesis of coumarin-3-carboxylic acids and
3-acetyl-coumarin derivatives using heteropolyacids as heterogeneous and recyclable
catalysts. Catal. Commun. 2008, 9, 470–474.
1
1
3. Ahmadi, S. J.; Sadjadi, S.; Hosseinpour, M.; Outokesh, M.; Hekmatshoar, R. A hetero-
geneous strong basic nanocrystalline copper(II) oxide catalyst for efficient synthesis of
4
-keto-4,5,6,7-tetrahydrobenzofurans. Catal. Commun. 2009, 10, 1423–1426.
4. Sheibani, H.; Saljoogi, A. S.; Bazgir, A. Three-component process for the synthesis of
-amino-5-pyrimidinecarbonitriles under thermal aqueous conditions or microwave
irradiation. Arkivoc 2008, 2, 115–123.
4