LETTER
Sulfur-Catalyzed Oxidative Carbonylation of Primary Amines
1163
to aliphatic amines such as n-propylamine and 2-(1-cyclo- In conclusion, we have successfully developed a highly
hexenyl)ethylamine, providing the corresponding ureas in efficient sulfur-catalyzed oxidative carbonylation process
high conversion and selectivity (>99%). However, the re- that converts amines and b-amino alcohols into ureas and
activity for hindered amines such as cyclohexylamine was 2-oxazolidinones, respectively, under relatively mild re-
poor (Table 1, entry 8) and this could be ascribed to a action conditions. Moreover, a reaction mechanism was
large steric effect in such a system. It was very disappoint- proposed, in which the in situ reoxidation of H S to sulfur
2
ing that the present methodology could not be applied to by NaNO played a crucial role in the catalytic oxidative
2
aromatic amines (Table 1, entry 11) and secondary carbonylation cycle.
aliphatic amines.
The mechanism of the oxidative carbonylation of amine
was not well understood. Based on the previous find-
Acknowledgment
1
0
The study was financially supported by the Natural Science Found-
ation of China (No. 20402017).
ings, a possible mechanism of this novel S/NaNO cata-
2
lytic oxidative carbonylation process was proposed
(
Scheme 1). Initial formation of carbonyl sulfide from
carbon monoxide and sulfur followed by condensation of References and Notes
carbonyl sulfide with aliphatic amine yielded an amine
thiolcarbamate. This intermediate then decomposed to
(
1) (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011.
(b) Ferraccioli, R.; Carenzi, D. Synthesis 2003, 1383.
isocyanate and H S. The former subsequently reacted
with the amine to give the product urea. In this process,
(c) Lee, S. H.; Clapham, B.; Koch, G.; Zimmermann, J.;
Janda, K. D. Org. Lett. 2003, 5, 511. (d) Yoshida, H.;
Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int.
Ed. 2002, 41, 3247. (e) Humphrey, J. M.; Liao, Y. S.; Ali,
A.; Rein, T.; Wong, Y. L.; Chen, H. J.; Courtney, A. K.;
Martin, S. F. J. Am. Chem. Soc. 2002, 124, 8584.
2) (a) Seydenpenne, J. Chiral Auxiliaries and Ligands in
Asymmetric Synthesis; Wiley: New York, 1995. (b) Ager,
D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
(c) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley:
New York, 2000.
2
the in situ oxidation of H S to sulfur was catalyzed by
2
NaNO , which was the key step for this catalytic reaction.
2
O
(
(
RNH2
H+
+
RHN
S
O
COS
RHN
H+
SH
3) (a) Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2,
140. (b) Maya, I.; Lopez, O.; Maza, S.; Fernandez-Bolanos,
J. G.; Fuentes, J. Tetrahedron Lett. 2003, 44, 8539.
+
CO
S
H2S
RN
C
O
(
7
c) Grzyb, J. A.; Batey, R. A. Tetrahedron Lett. 2003, 44,
485. (d) Lemoucheux, L.; Rouden, J.; Ibazizene, M.;
Sobrio, F.; Lasne, M. C. J. Org. Chem. 2003, 68, 7289.
e) Reddy, P. V. G.; Babu, Y. H.; Reddy, C. S. J. Heterocycl.
RNH2
NaNO2
O
(
RHN
NHR
Chem. 2003, 40, 535.
(
4) (a) Nomura, R.; Hasegawa, Y.; Ishimoto, M.; Toyosaki, T.;
Matsuda, H. J. Org. Chem. 1992, 57, 7339. (b) Bigi, F.;
Maggi, R.; Sartori, G. Green Chem. 2000, 2, 140. (c) Alba,
M.; Choi, J.; Sakakura, T. Chem. Commun. 2001, 2238.
Scheme 1 Catalytic mechanism
Interestingly, it was found that this highly efficient sulfur-
catalyzed oxidative carbonylation process was perfectly
applicable to primary amino alcohols, affording the corre-
sponding 2-oxazolidinones in high selectivity and under
the optimized reaction conditions (Table 1, entries 12–
(
d) Abla, M.; Choi, J.-C.; Sakakura, T. Green Chem. 2004,
, 524.
5) (a) Minisci, F.; Coppa, F.; Fontana, F. Chem. Commun.
994, 679. (b) Shi, F.; Deng, Y.; SiMa, T.; Peng, J.; Gu, Y.;
6
(
(
1
Qiao, B. Angew. Chem. Int. Ed. 2003, 42, 3257.
6) Giannoccaro, P.; De Giglio, E.; Gargano, M.; Aresta, M.;
Ferragina, C. J. Mol. Catal. A: Chem. 2000, 157, 131.
1
5). As can be seen, quantitative conversions of the four
different b-amino alcohols could be realized. To our
knowledge, this process was the first example to synthe-
size 2-oxazolidinones using a catalytic amount of sulfur as
catalyst.
(7) (a) Shi, F.; Deng, Y.; SiMa, T.; Yang, H. Tetrahedron Lett.
001, 42, 2161. (b) Mulla, S. A. R.; Rode, C. V.; Kelkar, A.
2
A.; Gupte, S. P. J. Mol. Catal. 1997, 122, 103.
(
8) (a) Yang, H.; Deng, Y.; Shi, F. J. Mol. Catal. A: Chem. 2001,
176, 73. (b) Chiarotto, I.; Feroci, M. J. Org. Chem. 2003, 68,
7137. (c) Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M.
J. Org. Chem. 2003, 68, 601. (d) Gabriele, B.; Salerno, G.;
Mancuso, R.; Costa, M. J. Org. Chem. 2004, 69, 4741.
A limitation associated with using CO/O as reagents in
organic synthesis was the potential danger of operating
the reaction at high reaction temperatures and pressures.
In our catalyst system, NaNO was used as the oxidant
thereby avoiding the use of oxygen, so our catalytic sys-
tem eliminated the potential dangers associated with the
2
2
(
e) Gabriele, B.; Salerno, G.; Brindisi, D.; Costa, M.;
Chiusoli, G. P. Org. Lett. 2000, 2, 625. (f) Gabriele, B.;
Mancuso, R.; Salerno, G.; Costa, M. Chem. Commun. 2003,
4, 486.
CO/O system.
2
(9) (a) Sonoda, N. Pure Appl. Chem. 1993, 65, 699. (b) Kondo,
K.; Murata, K.; Miyoshi, N.; Murai, S.; Sonoda, N. Synthesis
1
979, 735. (c) Kondo, K.; Yokoyama, S.; Miyoshi, N.;
Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. 1979,
8, 692.
1
Synlett 2006, No. 8, 1161–1164 © Thieme Stuttgart · New York