6434 Ihata et al.
Macromolecules, Vol. 38, No. 15, 2005
°
C, the LCST was decreased from 67 to 24 °C, as listed
941. (d) Wells, S. L.; DeSimone, J. Angew. Chem., Int. Ed.
2001, 40, 518-527. (e) Chemical Synthesis Using Supercriti-
in Table 3.
cal Fluids; Jessop, P. G., Leitner, W., Eds.; Wiley-VCH:
Weinheim, 1999.
2) Green Chemistry Using Liquid and Supercritical Carbon
Dioxide; DeSimone, J. M., Tumas, W., Eds.; Oxford University
Press: New York, 2003.
Controlling Factors for Determining the Ther-
moresponsive Properties of the Copolymers. Since
the thermally induced phase transition behavior in the
aqueous solution is attributed to the dehydration and
hydrophobic aggregation of the polymers, a suitable
balance of the both hydrophilic and hydrophobic moi-
eties in the polymer structures should determine the
thermoresponsive properties. It has been reported that
control of the LCST of PNIPAAm copolymers can be
attained by employing hydrophilic and hydrophobic
(
(
3) (a) Sargent, D. E. US Patent US 2,462,680, 1949; (b) Buckley,
G. D.; Ray, N. H. US Patent US 2,550,767, 1951. (c)
Darensbourg, D. J.; Stafford, N. W.; Katsurao, T. J. Mol.
Catal. 1995, 104, L1-L4. (d) Super, M.; Berluche, E.; Cos-
tello, C.; Beckman, E. Macromolecules 1997, 30, 368-372.
20
(
e) Mang, S.; Cooper, A. I.; Colclough, M. E.; Chauhan, N.;
Holmes, A. B. Macromolecules 2000, 33, 303-308.
4) (a) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.;
Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836-844. (b)
Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004,
(
21
monomers. The influence of CO2 pressure on the LCST
of the copolymeric product from 1 as shown in Figure 8
can be simply explained by the fact that the unit ratio
of the hydrophilic amine moiety in the polymer chain
to the relatively hydrophobic urethane moiety was
precisely controlled by the reaction pressure and tem-
perature. The increase in the urethane content in the
copolymers obtained under higher pressure could have
led to a lowering of the LCST with a decrease in the
hydrophilicity of the polymers (Table 2). However, on
the other hand, the reaction temperature proved to be
the dominant factor in determining the LCST rather
than the urethane content in the copolymer, especially
for the products obtained at 120 and 140 °C as discussed
above (Table 3). The formation of branched structures
might cause a loss in the NH protons in the polymer
43, 6618-6639.
(
(
5) (a) Stevens, H. C. US Patent US 3,248,415, 1966. (b) Inoue,
S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Polym. Lett. Ed.
1969, 7, 287-292.
6) (a) Darensbourg, D. J.; Holtcamp, M. W.; Struck, G. E.;
Zimmer, M. S.; Niezgoda, S. A.; Rainey, P.; Robertson, J. B.;
Draper, J. D.; Reibenspies, J. H. J. Am. Chem. Soc. 1999,
121, 107-116. (b) Cheng, M.; Lobkovsky, E. B.; Coates, G.
W. J. Am. Chem. Soc. 1998, 120, 11018-11019. (c) Darens-
bourg, D. J.; Yarbrough, J. C. J. Am. Chem. Soc. 2002, 124,
6335-6342. (d) Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G.
W. Angew. Chem., Int. Ed. 2003, 42, 5484-5487.
(
(
7) Soga, K.; Chiang, W. Y.; Ikeda, S. J. Polym. Sci., Polym.
Chem. Ed. 1974, 12, 121-131.
8) (a) Ihata, O.; Kayaki, Y.; Ikariya, T. Angew. Chem., Int. Ed.
2
004, 43, 717-719. (b) Ihata, O.; Kayaki, Y.; Ikariya, T.
Chem. Commun. 2005, 2268-2270. (c) Ihata, O.; Kayaki, Y.;
Ikariya, T. Kobunshi Ronbunshu 2005, 62, 196-199.
chains, leading to lowering of the hydrophilicity of the
whole copolymer22 and a drop in the LCST, even if the
(9) (a) Okano, T.; Bae, Y. H.; Jacobs, H.; Kim, S. W. J. Controlled
Release 1990, 11, 255-265. (b) Bromberg, L. E.; Ron, E. S.
Adv. Drug Deliv. Rev. 1998, 31, 197-221. (c) Chilkoti, A.;
Dreher, M. R.; Meyer, D. E.; Raucher, D. Adv. Drug Deliv.
Rev. 2002, 54, 613-630.
ratio of urethane and amine linkages were not altered.
Conclusions
(
(
10) Harmon, M. E.; Tang, M.; Frank, C. W. Polymer 2003, 44,
We have demonstrated that copolymerization of aziri-
dines with CO2 proceeded smoothly without any cata-
lysts under scCO2 to give the polymeric products having
a thermoresponsive functionality covering a wide tem-
perature range. Since their primary structures and
physical properties have proven to be strongly influ-
enced by external polymerization conditions, the ther-
moresponsive properties can be simply tuned by reaction
conditions, in particular the CO2 pressure. Current
efforts involve the exploration of other properties, the
analysis of this copolymerization mechanism, and the
use of other aziridine families as monomers.
4547-4556.
11) (a) Yokoyama, M. Drug Discov. Today 2002, 7, 426-432. (b)
Twaites, B. R.; Alarc o´ n, C. D. L. H.; Cunliffe, D.; Lavigne,
M.; Pennadam, S.; Smith, J. R.; G o´ recki, D. C.; Alexander,
C. J. Controlled Release 2004, 97, 551-566.
(
(
12) Cairns, T. L. J. Am. Chem. Soc. 1941, 63, 871-872.
13) Kayaki, Y.; Suzuki, T.; Noguchi, Y.; Sakurai, S.; Imanari, M.;
Ikariya, T. Chem. Lett. 2002, 424-425.
(14) Soga, K.; Hosoda, S.; Nakamura, H.; Ikeda, S. J. Chem. Soc.,
Chem. Commun. 1976, 617.
(
(
(
(
15) Neffgen, S.; Keul, H.; H o¨ cker, H. Macromol. Rapid Commun.
1996, 17, 373-382.
16) Tsukahara, T.; Kayaki, Y.; Ikariya, T.; Ikeda, Y. Angew.
Chem., Int. Ed. 2004, 43, 3719-3722.
17) Kweon, J.-O.; Lee, Y.-K.; Noh, S.-T. J. Polym. Sci., Part A:
Polym. Chem. 2001, 39, 4129-4138.
Acknowledgment. This work was financially sup-
ported by a Grant-in-Aid from the Ministry of Educa-
tion, Science, Sports, and Culture of Japan (No.
18) (a) Fischer, H.; Gyllenhaal, O.; Vessman, J.; Albert, K. Anal.
Chem. 2003, 75, 622-626. (b) Carretti, E.; Dei, L.; Baglioni,
P.; Weiss, R. G. J. Am. Chem. Soc. 2003, 125, 5121-5129.
19) (a) Penny, D. E.; Ritter, T. J. J. Chem. Soc., Faraday Trans.
1 1983, 79, 2103-2109. (b) McGhee, W.; Riley, D.; Christ, K.;
Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60, 2820-2830. (c)
Aresta, M.; Quaranta, E. Tetrahedron 1992, 48, 1515-1530.
20) (a) Heskins, M.; Guillet, J. E. J. Macromol. Sci., Chem. Ed.
1
2
4078209). A part of this study was supported by the
1st Century COE Program. The authors thank Dr. Y.
(
Sato and Professor A. Maruyama of Kyushu University
for performing temperature-controlled UV-vis spec-
troscopy.
(
1
968, A2, 1441-1445. (b) Bae, Y. H.; Okano, T.; Kim, S. W.
J. Polym. Sci., Polym. Phys. Ed. 1990, 28, 923-936.
(21) Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. Macromolecules
993, 26, 2496-2500.
22) van Vliet, R. E.; Hoefsloot, H. C. J.; Iedema, P. D. Polymer
003, 44, 1757-1763.
References and Notes
1
(
1) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Science 1995, 269,
(
1
065-1069. (b) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem.
2
Rev. 1995, 95, 259-272. (c) Oakes, R. S.; Clifford, A. A.;
Rayner, C. M. J. Chem. Soc., Perkin Trans. 1 2001, 917-
MA050549O