F. Li, C. Xia / Tetrahedron Letters 48 (2007) 4845–4848
Table 2. Oxidative cyclocarbonylation of b-aminoalcohols (1b–e) and
4847
References and notes
2-aminophenol (1f) to synthesize corresponding 2-oxazolidinones
1
. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev.
O
1
996, 96, 835; (b) K o¨ ll, P.; L u¨ tzen, A. Tetrahedron:
R1
H2N
R2
Pd(phen)Cl2/BMImI
H2O
HN
O
Asymmetry 1996, 7, 637; (c) L u¨ tzen, A.; K o¨ ll, P. Tetra-
hedron: Asymmetry 1997, 8, 29; (d) L u¨ tzen, A.; K o¨ ll, P.
Tetrahedron: Asymmetry 1997, 8, 1193; (e) Fonquerna, S.;
Moyano, A.; Peric a` s, M. A.; Riera, A. Tetrahedron:
Asymmetry 1997, 8, 1685; (f) Bravo, P.; Fustero, S.;
Guidetti, M.; Volonterio, A.; Zanda, M. J. Org. Chem.
+
CO/O2
CO/O2
-
OH
R1
R2
(
1b-1e)
(
2b-2e)
H
N
NH2
Pd(phen)Cl2/BMImI
H2O
+
O
1
999, 64, 8731; (g) Catalytic Asymmetric Synthesis; Ojima,
-
O
OH
I., Ed.; Wiley: New York, 2000.
(
1f)
(2f)
2
. (a) Seneci, P.; Caspani, M.; Ripamonti, F.; Ciabatti, R. J.
Chem. Soc., Perkin Trans. 1 1994, 2345; (b) Grega, K. C.;
Barbachyn, M. R.; Brickner, S. J.; Mizsak, S. A. J. Org.
Chem. 1995, 60, 5255; (c) Brikner, S. J.; Hutchinson, D.
K.; Barbachyn, M. R.; Manninen, R. R.; Ulanowicz, D.
A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops,
D. S.; Ford, C. W.; Zurenko, G. E. J. Med. Chem. 1996,
ꢀ1
Sub.
R
1
R
2
Conv. (%) Select. (%) TOF (h )
1
1
1
1
1
b
c
d
H
CH
CH
CH
H
3
94
93
96
92
90
97
97
99
95
94
3250
3220
3390
3120
3020
3
3
CH
2
H
H
b
e
(CH
2-Aminophenol
3
)
2
CH
c
f
3
9, 673; (d) Lohray, B.; Baskaran, S.; Rao, B. S.; Reddy,
a
Reaction conditions: the mol ration of substrate/Pd catalyst = 3570,
BMImI 1 ml; temperature 110 °C, PCO=O2 ¼ 5:0=0:2, time 1 h.
L enantiomer.
B. Y.; Rao, I. N. Tetrahedron Lett. 1999, 40, 4855; (e)
Bager, D. J.; Prakas, I. H.; Schaad, D. R. Aldrichim. Acta
1997, 30, 3; (f) Bach, J.; Bull, S. D.; Davies, S. G.;
Nicholson, R. L.; Sanganee, H. J.; Smith, A. D. Tetra-
hedron Lett. 1999, 40, 6677.
b
c
10 ml DME was used.
3
4
. Puschin, N. A.; Mitic, R. V. Justus Leibigs Ann. Chem.
1
937, 532, 300.
tained with Pd(phen)Cl complex alone as the catalyst,
2
. (a) Gabriele, B.; Salerno, G.; Brindisi, D.; Costa, M.;
Chiusoli, G. P. Org. Lett. 2000, 2, 625; (b) Gabriele, B.;
Mancuso, R.; Salerno, G.; Costa, M. J. Org. Chem. 2003,
6, 601; (c) Gabriele, B.; Mancuso, R.; Salerno, G.; Costa,
M. Chem. Commun. 2003, 486.
and the addition of conventional inorganic or organic
ammonium iodide salts still could not enhance the
catalytic performance markedly, an excellent selectiv-
ity of 2-oxazolidinone and TOF was obtained over
BMImI stabilized Pd(phen)Cl complex system. Based
5. (a) Li, F. W.; Xia, C. G. J. Catal. 2004, 227, 542; (b) Li, F.
W.; Peng, X. G.; Xia, C. G.; Hu, B. Chin. J. Chem. 2005,
23, 643; (c) Peng, X. G.; Li, F. W.; Xia, C. G. Synlett 2006,
2
on the latest published results by Dupont and Migow-
6
a
ski, it can be conjectured that the highly synergistic
1
161; (d) Liu, J. M.; Peng, X. G.; Liu, J. H.; Zheng, S. Z.;
stabilization effect between Pd(phen)Cl and the task
2
Sun, W.; Xia, C. G. Tetrahedron Lett. 2007, 48, 929.
specific ILs leads to the outstanding stability and activ-
ity of our IL-stabilized palladium complex catalyst
system.
6
. (a) Migowski, P.; Dupont, J. Chem. Eur. J. 2007, 13, 32–39;
(
b) Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.;
Finke, R. G. J. Am. Chem. Soc. 2005, 127, 5758; (c) Dupont,
J.; Spencer, J. Angew. Chem., Int. Ed. 2004, 43, 5296; (d)
Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F.
P.; Teixeira, S. R. J. Am. Chem. Soc. 2002, 124, 4228.
In conclusion, we have developed a Pd(phen)Cl /BMI-
2
mI catalytic system that gave good catalytic activity in
oxidative cyclocarbonylation reaction under consider-
ably mild conditions (a temperature of 110 °C and a
total pressure of 2.1 MPa), 1-butyl-3-methyl-imidazolium
iodide salts showed better ability in the stabilization
of transition metal active sites and promotion of
catalytic performance than other anion type of imidazo-
lium ionic liquids and conventional iodide salts;
furthermore, the catalyst could be recycled with minor
loss in activity and selectivity. All these results demon-
strate that the combination of a suitable ionic liquid
as stabilizer, promoter and reaction medium with a
metal complex is a pathway towards highly effective
and stable heterogeneous catalysts for the oxidative
cyclocarbonylation.
7. Li, F. W.; Xiao, L. F.; Xia, C. G.; Hu, B. Tetrahedron
Lett. 2004, 45, 8307.
8
. The ionic liquid, BMImI (BMIm = 1-butyl-3-methyl-
imidazolium), BMImBF , BMImPF , BMImCl, BMImBr
4
6
and Pd(phen)Cl
according to the reported literatures.
2
complexes were, respectively, synthesized
9,10
Oxidative cyclo-
carbonylation reactions were performed in a 100-mL
stainless-steel reactor which was equipped with a magnetic
stirrer and an automatic temperature control system. For
each typical reaction, known quantities of b-aminoalco-
hols (1a–e) or 2-aminophenol (1f) (10 mmol), Pd complex
catalyst (1 mg), IL (1 ml) and 6 ml DME were successively
charged into the reactor, the reactor was flushed three
times with CO, and then was pressurized with CO and O2
to a total pressure of 5.2 MPa (CO 5.0 MPa and O2
0
.2 MPa). This condition corresponded to about 96% of
CO in the CO–O mixture and is already beyond the
2
4
c
explosive limit for CO–O2 mixture. Then the reaction
proceeded at 120 °C for 1 h. After the reaction, the DME
phase containing 2-oxazolidinones can be easily separated
from the reaction mixture by simple decantation and the
ILs phase including the palladium complex catalyst can be
reused after evaporation with a vacuum pump to remove
water liberated in the reaction. Qualitative analyses were
conducted with a HP 6890/5973 GC–MS with chemsta-
tion ?tul?> containing a NIST Mass Spectral Database
Acknowledgements
This research was financially supported by the National
Science Foundation of China (20533080) and the
National Science Fund for Distinguished Young Schol-
ars (20625308).