Paper
Catalysis Science & Technology
Treatment of SiO2/NEt2 with phenylboronic acid for 11B NMR
analysis of the reaction intermediate
(e) K. Motokura, M. Tada and Y. Iwasawa, J. Am. Chem. Soc.,
2007, 129, 9540; ( f ) R. K. Zeidan and M. E. Davis, J. Catal.,
2007, 247, 379; (g) K. Motokura, M. Tada and Y. Iwasawa,
Angew. Chem., Int. Ed., 2008, 47, 9230; (h) S. Shylesh, A.
Wagner, A. Seifert, S. Ernst and W. R. Thiel, Chem. – Eur. J.,
2009, 15, 7052; (i) K. Motokura, M. Tada and Y. Iwasawa,
J. Am. Chem. Soc., 2009, 131, 7944; ( j) S. Shylesh and W. R.
Thiel, ChemCatChem, 2011, 3, 278; (k) F. Shang, J. Sun, S.
Wu, H. Liu, J. Guan and Q. Kan, J. Colloid Interface Sci.,
2011, 355, 190.
SiO2/NEt2 (0.10 g, N: 0.083 mmol), dioxane/H2O IJ10/1, 1.0
mL), and phenylboronic acid (2) (0.083 mmol) were placed in
a Pyrex glass reactor. The resulting mixture was vigorously
stirred for 5 min at 40 °C under Ar. Then, the solvent was
evaporated under vacuum, and the resulting solid was trans-
ferred to the NMR sample rotor.
Treatment of SiO2/diamine/Rh/NEt2 with phenylboronic acid
for 11B NMR analysis of the reaction intermediate
6 For Lewis acids or metal particles, and organic bases,
see: (a) M. Waki, S. Muratsugu and M. Tada, Chem.
Commun., 2013, 49, 7283; (b) K. Motokura, Y. Ito, H. Noda,
A. Miyaji, S. Yamaguchi and T. Baba, ChemPlusChem,
2014, 79, 1053.
7 For metal complexes and organic bases, see: (a) A. T.
Dickschat, S. Surmiak and A. Studer, Synlett, 2013, 24, 1523;
(b) A. T. Dickschat, F. Behrends, S. Surmiak, M. Weiβ, H.
Eckert and A. Studer, 2195, Chem. Commun., 2013, 49; (c) J.
Liu, X. Huo, T. Li, Z. Yang, P. Xi, Z. Wang and B. Wang,
Chem. – Eur. J., 2014, 20, 11549.
SiO2/diamine/Rh/NEt2 (0.19 g, tertiary amine: 0.085 mmol),
dioxane/H2O IJ10/1, 1.0 mL), and phenylboronic acid (2)
(0.085 mmol) were placed in a Pyrex glass reactor. The
resulting mixture was vigorously stirred for 5 min at 40 °C
under Ar. Then, the solvent was evaporated under vacuum,
and the resulting solid was transferred to the NMR sample
rotor.
Acknowledgements
8 (a) H. Noda, K. Motokura, A. Miyaji and T. Baba, Angew.
Chem., Int. Ed., 2012, 51, 8017; (b) H. Noda, K. Motokura, A.
Miyaji and T. Baba, Adv. Synth. Catal., 2013, 355, 973.
9 (a) M. Sakai, H. Hayashi and N. Miyaura, Organometallics,
1997, 16, 4229; (b) Y. Takaya, M. Ogasawara, T. Hayashi, M.
Sakai and N. Miyaura, J. Am. Chem. Soc., 1998, 120, 5579; (c)
S. Sakuma and N. Miyaura, J. Org. Chem., 2001, 66, 8944; (d)
M. Kuriyama and K. Tomioka, Tetrahedron Lett., 2001, 42,
921; (e) M. T. Reets, D. Moulin and A. Gosberg, Org. Lett.,
2001, 3, 4083; ( f ) T. Hayashi, M. Takahashi, Y. Takaya and
M. Ogasawara, J. Am. Chem. Soc., 2002, 124, 5052; (g) J.-G.
Boiteau, A. J. Minnaard and B. L. Feringa, J. Org. Chem.,
2003, 68, 9481; (h) Y. Otomaru, T. Senda and T. Hayashi,
Org. Lett., 2004, 6, 3357; (i) A. Kina, K. Ueyama and T.
Hayashi, Org. Lett., 2005, 7, 5889; ( j) T. Korenaga, K. Osaki,
R. Maenishi and T. Sakai, Org. Lett., 2009, 11, 2325; (k) X.
Hu, M. Zhuang, Z. Cao and H. Du, Org. Lett., 2009, 11, 4744;
(l) K. Motokura, N. Hashimoto, T. Hara, T. Mitsudome, T.
Mizugaki, K. Jitsukawa and K. Kaneda, Green Chem.,
2011, 13, 2416; (m) T. Hara, N. Fujita, N. Ichikuni, K.
Wilson, A. F. Lee and S. Shimazu, ACS Catal., 2014, 4, 4040.
10 (a) A. Kina, Y. Yasuhara, T. Nishimura, H. Iwamura and T.
Hayashi, Chem. – Asian J., 2006, 1, 707; (b) A. Kina, H.
Iwamura and T. Hayashi, J. Am. Chem. Soc., 2006, 128, 3904.
11 (a) A. A. C. Braga, N. H. Morgon, G. Ujaque and F. Maseras,
J. Am. Chem. Soc., 2005, 127, 9298; (b) A. J. J. Lennox and
G. C. Lloyd-Jones, Angew. Chem., Int. Ed., 2013, 52, 7362.
12 (a) S. Toyota and M. Oki, Bull. Chem. Soc. Jpn., 1992, 65,
1832; (b) L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S.
Sorey and E. V. Anslyn, J. Am. Chem. Soc., 2006, 128,
1222.
We thank the Kyusyu Synchrotron Light Research Center
(SAGA-LS) for their technical support. XAFS measurements
were carried out under the approval of the SAGA-LS Advisory
Committee (Proposal No. 1404015F). This study was
supported by JSPS KAKENHI (grant no. 24686092 and
25630362) and JSPS Grant-in-Aid for Scientific Research on
Innovative Areas “3D Active-Site Science” (grant no.
26105003). H.N. thanks Grant-in-Aid for JSPS Fellows (grant
no. 2612038).
References
1 A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633.
2 (a) M. Sawamura, M. Sudoh and Y. Ito, J. Am. Chem. Soc.,
1996, 118, 3309; (b) S. Kanemasa and K. Ito, Eur. J. Org.
Chem., 2004, 4741; (c) I. Ibrahem and A. Córdova, Angew.
Chem., Int. Ed., 2006, 45, 1952; (d) B. M. Trost and X. Luan,
J. Am. Chem. Soc., 2011, 133, 1706.
3 (a) M. Rubina, M. Conley and V. Gevorgyan, J. Am. Chem.
Soc., 2006, 128, 5818; (b) S. Mukherjeem and B. List, J. Am.
Chem. Soc., 2007, 129, 11336; (c) H. Xu, S. J. Zuend, M. G.
Woll, Y. Tao and E. N. Jacobsen, Science, 2010, 327, 986; (d)
T. Ema, Y. Miyazaki, S. Koyama, Y. Yano and T. Sakai, Chem.
Commun., 2012, 48, 4489.
4 For reviews, see: (a) E. L. Margelefsky, R. K. Zeidan and
M. E. Davis, Chem. Soc. Rev., 2008, 37, 1118; (b) K.
Motokura, M. Tada and Y. Iwasawa, Chem. – Asian J.,
2008, 3, 1230.
5 For Brønsted acids and organic bases, see: (a) Y. Kubota, K.
Goto, S. Miyata, Y. Goto, Y. Fukushima and Y. Sugi, Chem.
Lett., 2003, 32, 234; (b) S. Huh, H.-T. Chen, J. W. Wiench, M.
Pruski and V. S.-Y. Lin, Angew. Chem., Int. Ed., 2005, 44,
1826; (c) R. K. Zeidan, S.-J. Hwang and M. E. Davis, Angew.
Chem., Int. Ed., 2006, 45, 6332; (d) J. D. Bass, A. Solovyov,
A. J. Pascall and A. Katz, J. Am. Chem. Soc., 2006, 128, 3737;
13 For the detailed calculation method, see Fig. S1 in the
ESI†.
14 (a) K. Yamaguchi, C. Yoshida, S. Uchida and N. Mizuno,
J. Am. Chem. Soc., 2005, 127, 530; (b) J. Long, G. Liu, T.
2726 | Catal. Sci. Technol., 2015, 5, 2714–2727
This journal is © The Royal Society of Chemistry 2015