10.1002/asia.201900501
Chemistry - An Asian Journal
COMMUNICATION
[5]
Selected examples of other pyrrolide-based PNP complexes: a) N. Grüger, H.
Wadepohl, L. H. Gade, Dalton Trans. 2012, 41, 14028; b) J. A. Kessler, V. M.
Iluc, Inorg. Chem. 2014, 53, 12360; c) M. Kreye, M. Freytag, P. G. Jones, P. G.
Williard, W. H. Bernskoetter, M. D. Walter, Chem. Commun. 2015, 51, 2946;
d) D. S. Levine, T. D. Tilley, R. A. Andersen, Organometallics 2017, 36, 80; e)
B. Liu, S. Li, M. Wang, D. Cui, Angew. Chem. Int. Ed. 2017, 56, 4560; f) V. M.
Krishnan, I. Davis, T. M. Baker, D. J. Curran, H. D. Arman, M. L. Neidig, A.
Liu, Z. J. Tonzetich, Inorg. Chem. 2018, 57, 9544; g) H. Alawisi, K. F. Al-
Afyouni, H. D. Arman, Z. J. Tonzetich, Organometallics 2018, 37, 4128.
Selected examples on the use of pyrrolide-based PNP complexes as catalysts in
organic synthesis: a) G. T. Venkanna, S. Tammineni, H. D. Arman, Z. J.
Tonzetich, Organometallics 2013, 32, 4656; b) G. T. Venkanna, H. D. Arman,
Z. J. Tonzetich, ACS Catal. 2014, 4, 2941; c) D. S. Levine, T. D. Tilley, R. A.
Andersen, Organometallics 2015, 34, 4647; d) D. S. Levine, T. D. Tilley, R. A.
Andersen, Chem. Commun. 2017, 53, 11881; e) S. Nakayama, S. Morisako, M.
Yamashita, Organometallics 2018, 37, 1304.
Separately, we confirmed that no reaction of [3-H]2 with benzene
at room temperature for 44 h occurred at all. This result indicates that
iron-hydride species derived from [3-H]2 are reactive not toward
benzene but toward furan under the present reaction conditions. We
consider that this different reactivity is due to higher acidity of the C-H
bond of furan than that of benzene.[16,17]
During our investigation of the reactivity of the iron complexes,
we have found that the reaction of anisole with 1 equiv of B2pin2 in the
presence of 10 mol% of 3-Me at 100 °C for 18 h gave a mixture of the
sp2 C-H borylated products in 30% yield together with the sp3 C-H
borylated product in 13% yield (Scheme 6a). This result indicates the
superstoichiometric amount of the sp3 C-H borylation product was
produced. On the other hand, when 4-methylanisole was used to avoid
the sp2 C-H borylation of the benzene ring under the same reaction
conditions, the sp3 C-H borylation of methoxy group proceeded
selectively to give the sp3 C-H borylated product in 25% yield as a sole
product (Scheme 6b). To the best of our knowledge, this is the first
successful example of the iron-catalyzed sp3 C-H borylation.
[6]
[7]
a) S. Kuriyama, K. Arashiba, K. Nakajima, Y. Matsuo, H. Tanaka, K. Ishii, K.
Yoshizawa, Y. Nishibayashi, Nat. Commun. 2016, 7, 12181; b) Y. Sekiguchi, S.
Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, Y. Nishibayashi, Chem.
Commun. 2017, 53, 12040.
[8]
[9]
K. Nakajima, T. Kato, Y. Nishibayashi, Org. Lett., 2017, 19, 4323.
(a)
3-Me
10 mol%
OMe
OMe
O
Bpin
a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig,
Chem. Rev. 2010, 110, 890; b) A. Ros, R. Fernández, J. M. Lassaletta, Chem.
Soc. Rev. 2014, 43, 3229; c) L. Xu, G. Wang, S. Zhang, H. Wang, L. Wang, L.
Liu, J. Jiao, P. Li, Tetrahedron 2017, 73, 7123.
+
+
B2pin2
100 °C, 18 h
Bpin
30%
o-/m-/p- = 10/75/15
200 equiv.
1 equiv.
13%
[10] T. Hatanaka, Y. Ohki, K. Tatsumi, Chem. Asian J. 2010, 5, 1657.
[11] G. Yan, Y. Jiang, C. Kuang, S. Wang, H. Liu, Y. Zhang, J. Wang, Chem.
Commun. 2010, 46, 3170.
(b)
3-Me
10 mol%
OMe
O
Bpin
+
B2pin2
[12] a) T. J. Mazzacano, N. P. Mankad, J. Am. Chem. Soc. 2013, 135, 17258; b) S.
R. Parmelee, T. J. Mazzacano, Y. Zhu, N. P. Mankad, J. A. Keith, ACS Catal.
2015, 5, 3689; c) T. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier,
S. Bontemps, J.-B. Sortais, S. Sabo-Etienne, C. Darcel, J. Am. Chem. Soc. 2015,
137, 4062.
100 °C, 18 h
Me
Me
200 equiv.
1 equiv.
25%
Scheme 6. sp3 C-H borylation of anisole derivatives.
[13] Y. Yoshigoe, Y. Kuninobu, Org. Lett. 2017, 19, 3450.
[14] In addition to the examples shown in Scheme 4, we examined ethylbenzene, m-
xylene, and fluorobenzene as substrates. However, the corresponding products
were obtained in low yields (15-30%).
In summary, we have newly designed the iron-catalyzed C-H
borylation using iron complexes bearing a 4,5,6,7-tetrahydroisoindol-2-
ide-based PNP pincer ligand, based on results of stoichiometric reactions
of the iron complexes. As a result, we can apply a variety of arenes, not
only benzene derivatives but also 5-membered heteroarenes such as
pyrrole derivatives, to the C-H borylation. We have also found the first
successful example of the iron-catalyzed sp3 C-H borylation in the
reaction of 4-methylanisole. Further work is currently in progress in
our laboratory.
[15] We investigated reactions of other heterocycles such as pyridine, 2,6-lutidine,
N-methylimidazole, N-methylindole, 1,3-oxazole. However, the corresponding
C-H borylation products were not observed in all cases.
[16] K. Shen, Y. Fu, J.-N. Li, L. Liu, Q.-X. Guo, Tetrahedron 2007, 63, 1568.
[17] In some C-H borylation reactions, correlates between reactivity and acidity of
C-H bonds were reported: a) B. A. Vanchura, II, S. M. Preshlock, P. C. Roosen,
V. A. Kallepalli, R. S. Staples, R. E. Maleczka, Jr., D. A. Singleton, M. R. Smith,
III, Chem. Commun. 2010, 46, 7724; b) H. Tajuddin, P. Harrisson, B. Bitterlich,
J. C. Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C.
Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder, P. G. Steel Chem. Sci. 2012,
3, 3505.
Keywords: iron complex • pincer complex • C-H borylation •
heterocycles
[1]
a) R. G. Bergman, Nature 2007, 446, 391; b) D. Alberico, M. E. Scott, M.
Lautens, Chem. Rev. 2007, 107, 174; c) J. Yamaguchi, A. D. Yamaguchi, K.
Itami, Angew. Chem. Int. Ed. 2012, 51, 8960; d) H. M. L. Davies, D. Morton, J.
Org. Chem. 2016, 81, 343; e) Y. Yang, M. Nishiura, H. Wang, Z. Hou, Coord.
Chem. Rev. 2018, 376, 506.
[2]
[3]
[4]
a) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293; b) I. Bauer, H.-J.
Knölker, Chem. Rev. 2015, 115, 3170; c) P. J. Chirik, Angew. Chem. Int. Ed.
2017, 56, 5170; d) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086.
a) D. Benito-Garagorri, K. Kirchner, Acc. Chem. Res. 2008, 41, 201; b) J. I. van
der Vlugt, J. N. H. Reek, Angew. Chem. Int. Ed. 2009, 48, 8832; c) C. Gun-
anathan, D. Milstein, Acc. Chem. Res. 2011, 44, 588.
Examples of pyrrolide-based PNP-iron complexes: a) C. V. Thompson, H. D.
Arman, Z. J. Tonzetich, Organometallics 2017, 36, 1795; b) N. Ehrlich, M.
Kreye, D. Baabe, P. Schweyen, M. Freytag, P. G. Jones, M. D. Walter, Inorg.
Chem. 2017, 56, 8415; c) A. M. Holland, A. G. Oliver, V. M. Iluc, Acta
Crystallogr., Sect. C 2017, 569; d) C. V. Thompson, I. Davis, J. A. DeGayner,
H. D. Arman, Z. J. Tonzetich, Organometallics 2017, 36, 4928; e) N. Ehrlich,
D. Baabe, M. Freytag, P. G. Jones, M. D. Walter, Polyhedron 2018, 143, 83.
This article is protected by copyright. All rights reserved.